Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: 6th Civil Engineering

Regular Examination April - June 2015

2CI601 Design of Steel Structure

Time: 3 Hours / As per Scheme

Instruction: 1. Assume suitable data if necessary.

2. Mentioned codes are allowed. IS 800:2007, IS 875 Part-3, Steel Table or IS 808.

Section - I

Que. - 1 Design the Top Chord Member Having maximum length of 2.1 m and which is having tension 12 force of 201 kN and compression force of 108 kN.

OR

- Que. 1 Design the connection for main tie Member Having maximum length of 4 m and which is 12 having tension force of 175kN and compression force of 69 kN.
- $c_{e,-2}$ Design the Channel purlin for the Howe type of the truss which having a span of 14 m, and 11 height of 8 m, and spacing of truss is 4 m the wind force on the truss is 0.985kN/m².

OR

Que. -2 An ISMB 500 section is used as a beam over a span of 6 m, with simply supported ends. 11 Determine the maximum factored uniformly distributed load that the beam can carry if the ends are restrained against torsion but compression flange is laterally unsupported.

Que. - 3 Explain Any Two.

- A How to calculate a wind pressure on roof?
- B Draw a suitable truss and define its member in brief.
- C Give the Effective length of the beam which having continuous length with partially torsional restrained and what are the deference between normal condition and destabilizing condition?

Section – II

- Que. -4 A built-up column 2ISMC 350 at back to back spacing of 220 mm is carrying an axial 6 load of 1100 KN. length of column is 10 m .it is held in position at both end but not restrained in direction. Design double lacing system
 - B Design a slab base foundation for a column ISHB 350 to carry a axial load of 1200 KN.
 6 Assume FE- 410 and M25.take SBC=200KN/M².

OR

- Que. -4 A built-up column 2ISMC 300 at back to back spacing of 200 mm is carrying an axial load 6 of 1500 KN. length of column is 10 m .it is held in position at both end but not restrained in direction Design double lacing system .
 - B Design a slab base foundation for a column 2 ISHB 300 to carry a axial load of 1200 6 KN.Assume FE 410 and M25.take SBC=200KN/M²
- Que.-5 A Design a plate girder of effective span of 30 m and carrying UDL of 30 kN/m and two Concentrated load of 150 kN each of them acting 10 m from both ends. The girder is simply supported at the ends
 - B A column in a building frame is subjected to factored load 500 kn. at an eccentricity of 120 5 mm from major axis. Design the column. consider length of column is 4 m.

PAGE: 1 OF2

12

Total Marks: 70

Que. - 5 A Design a plate girder of effective span of 30 m and carrying udl of 40kN/m and two Concentrated load of 180 kN each acting of 10 m from both ends. The girder is simply supported at the ends Supported at the ends.

	B	Explain horizontal and vertical stiffeners.	5
Que. – 6	A	Design a hand operated overhead crane, which is provided in a shed, and the details are:	12

Capacity of crane = 50 kN Longitudinal spacing of column = 6m Center to center distance of gantry girder = 12m Wheel spacing = 3m Edge distance = 1m Weight of crane girder = 40 Weight of trolley car = 10 kN

END OF PAPER

PAGE: 20F2

6