Student Exam No.

GANPAT UNIVERSITY

B. Tech. SemesterVI (Electronics and Communication Engineering) CBCS Regular Theory Examination April - June 2015 (2EC604) Introduction to Detection Theory

Time:3 Hours Instructions: **Total Marks: 70**

[6]

[6]

[6]

[6]

1. All questions are compulsory.

- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.
- 4. Standard terms and notation are used.

Section - I

Q-1 (A) Prove that correlation coefficient is independent of the origin and scale. [6]

(B) A random variable X is exponentially distributed with parameter $\lambda=1.$ Use [6] Tchebycheff's inequality to show that $P\{(-1 \le X \le 3) \ge 0.75\}$ also Find the actual probability.

1	× 1		
Ā	9	3.4	
ς.	Ζ.	2.1	٤.
-			

Q-1 (A) Compute correlation coefficient(r_{xy}) between X and Y.

X	80	45	55	56	58	60	65	08	/0	15	85
Y	82	56	50	48	60	62	64	65	70	74	90

(B) Prove Tchebycheff's inequality.

- Q-2 (A) Explain Strict sense stationary (SSS) and wide sense stationary (WSS) Processes. [6]
 - (B) Prove that output of the Matched filter depends on the energy rather than shape of [5] the input signal.

OR

- Q-2 (A) Show that Match filter is an alternate option of the correlation type demodulator. [6]
 - (B) Justify that SNR can be improved by "Wiener-hopf filter" [5]
- Q-3 (A) Explain binary Maximum Likelihood detection.
 - (B) Find the orthogonal basis signals using Gram-Schmidt procedure.

Page 1 of 2