GANPAT UNIVERSITY

Evening 1051203 M. Tech. Semester-M. Tech. Semester-II (CE) Regular Examination (April-June 2015) **3CE202** : Advanced Computer Architecture

Time: 3 Hours]

()

[Total Marks: 60

Instruction: 1 All questions are compulsory.

2 Answer both sections in separate answer sheets.

SECTION - I

Q-1. (A) Calculate delay in number of clock cycle, due to data dependency for the following [5] instructions.

Instr. 1. DIV R1,R2,R3	/C(R1) < -C(R2) / C(R3)
Instr. 2. SUB R3,R4,R5	/C(R3) <-C(R4) - C(R5)
Instr. 3. DEC R2	/ C(R2) <- C(R2) - 1
Instr. 4. ADD R5,R6,R7	
a look and analy astrolated	

Apply pipeline lock and again calculate the delay with for the same problem."

(B) Define internal forwarding technique with its types and apply it for the following [5] operations in a sequence. Draw data flow graph and make compound function after applying this method.

1.	$R_1 <- (M_1)$	(fetch)
2.	$R_1 <- (R_1) / (M_2)$	(divide)
3.	$R_1 < (R_1) + (M_3)$	(add)
4.	$M_4 <- (R_1)$	(store)

OR

Q-1.	(A)	Explain different classification schemes of pipeline processors with figure.	[5]
	(B)	Define non linear pipelines? Explain that such pipelines are configured for multiple outputs and draw reservation table for given example.	[5]
Q-2.	(A)	Explain two configurations of SIMD array processor with figure and mention two differences between them.	[5]
	(B)	Explain direct mapping technique for mapping of main memory to cache memory.	[5]
		OR	
Q-2.	(A)	Explain fully associative mapping for cache memory.	[5]
	(B)	Describe super scalar processor with state time diagram and its features. Derive equation to find speedup of the superscalar machine over the base machine.	[5]
Q-3.	(A)	"Synchronization in Pipeline processing is essential". State True or False & justify your answer with example pipeline diagram.	[4]
	(B)	Evaluate data dependences among the statements of the following program and draw dependency graph:S1: LOAD R_A , M[10] $/R_A \leftarrow M[10]$ S2: LOAD R_B , M[45] $/R_B \leftarrow M[45]$ S3: ADD R_A , R_B $/R_A \leftarrow R_A + R_B$ S4: DIV R_A , 7 $/R_A \leftarrow R_A / 7$ S5: STORE M[20], R_A $/M[20] \leftarrow R_A$	[6]

SECTION – II

Q-4.	(A)	Explain overlapping register windows concept in RISC with figure.	[5]
	(B)	For SIMD architecture, draw diagram and describe significance of generalized multiprocessor system containing IPMN, PION, and IPCN networks.	[5]
		OR	
Q-4.	(A)	Explain attributes of RISC architecture and compare it with CISC.	[5]
	(B)	Explain use of compensation code in upward and downward code motion in trace scheduling with diagram for VLIW.	[5]
		1.401732	
Q-5.	(A)	Define: Bisection width and what are the factors affecting the performance of an interconnection network and why?	[5]
	(B)	Explain concept of VLIW and what are the possible problems in VLIW?	[5]
		OR	[0]
Q-5.	(A)	Explain I-Structure as a synchronization mechanism in dataflow computer architecture with diagram.	[5]
	(B)	Draw its architectural diagram of ULTRA SPARC IV plus and list out its features.	[5]
Q-6.	(A)	Take one example to explain benefits of masking and data routing mechanism in Illiac IV.	[5]
	(B)	Calculate, miss penalty for (1) 2 words wide and (2) 4 words wide Interleaved memory organizations, for the following: . 1 clock cycle to send the address	[5]
		15 clock cycles for each DRAM access initiated	
		1 clock cycle to send a word of data	

4 word cache block and 1 word wide DRAM bank.

--- END OF PAPER ----