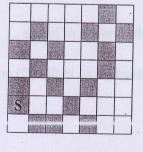
Enrollment No: ____

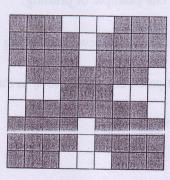
GANPAT UNIVERSITY

M. Tech semester II (Information Technology) Regular Examination April - June 2015


3IT201: DIGITAL IMAGE PROCESSING

Total Tin	ie: 3 hours Total Marks	: 60
Instructio	 ons: 1. Write each section in separate answer sheet. 2. Figure to the right indicates full marks. 3. Assume suitable data wherever necessary. 	
	SECTION – I	
Q – 1 (a)	Differentiate between followings: I. Radiance v/s Luminance II. Monochromatic light v/s Chromatic light	[2]
(b)	Explain image sampling and quantization process.	[4]
(c)	Discuss the image degradation / restoration process model.	[4]
	OR OR	
Q – 1 (a)	Describe image averaging	[3]
(b)	What is image interpolation? Differentiate between bilinear and bi-cubic interpolation.	[3]
(c)	Explain the probability density functions for following types of noise:I. Gaussian noiseII. Erlang noise	[4]
Q – 2 (a)	Extract the connected components from the image given in fig. (A)using morphological operation. 'S' indicates the starting point for the procedure.	[5]
(b)	Draw the necessary structuring elements to detect the end points of horizontal line, vertical line and line with 45° angel for hit-or-miss transformation.	[3]
(c)	Prove that erosion and dilation operations are dual to each other.	[2]
	OR	
Q - 2 (a)	Derive the skeleton for the image shown in fig.(B) on page 2.	[6]
(b)	What is pruning? Discuss any one example of pruning.	[4]
Q - 3 (a)	Discuss the low level, mid level and high level processing in the context of image processing.	[3]
(b)	Find the shortest 8-path and m-path between P and Q in the image given in fig. (C) on page 2. Let $V=\{0,1,2\}$.	[4]
(c)	Discuss Median, Max and Min fliters	[3]

 \bigcirc


SECTION – II

Q – 4 (a)	Consider the histogram values given below, for the 60 x 45, 3-bit image:								[6]	-	
•	r _k	0	1	2	3	4	5	6	7		
	n _k	203	256	524	229	545	312	499	132		-
	For the above image, achieve following histogram specification.										
	Zq	0	1	2	3 .	- 4	5	6	7]	
	p _z (z _q)	0	0	0	0	0.16	0.33	0.27	0.24		
(b)	Explain the basic steps for applying filters in frequency domain.									[4]	
	OR										
Q - 4 (a)	filtering.										
· (b)	What is ringing effect? What is the cause of ringing effect?									[4]	
Q - 5 (a)	Discuss how image compression can be achieved using bit plane slicing.									[4]	_
(b)	Just derive the Laplacian-of-Gaussian filter.									[3]	
: (c)	How to determine the maximum value of between-class variance in Otsu's algorithm?									[3]	
and the second					OR			parti si tes			
Q - 5 (a)	Explain log transformation and power-law transformation to enhance the image.									[4]	
· (b)	Discuss the watershed transformation algorithm.									[6]	
Q – 6 (a)											
ta isoihev	I. Robert's	cross grad	ient I	I. Prewitt		III. S	obel opera	itor		[3]	
· (b)	Explain the Ideal and Butterworth high pass filters.									[4]	
. (c)	What is non-maxima suppression? How it can be performed?									[3]	

•

.

-- X -----

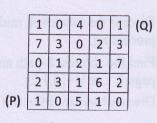


Fig. (C)

END OF PAPER

Page 2 of 2