GANPAT UNIVERSITY B.TECH SEM-IV (ELECTRICAL) REGULAR EXAMINATION April - June 2015 2EE402:-ELECTRICAL MACHINES-II

Time: 3 Hours Total Marks:-70

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

SECTION-I

- Que-1 (A) Draw and explain the equivalent circuit of a single phase induction motor based on [06] double field revolving theory for with and without core loss.
 - (B) Explain the no load and blocked rotor tests in a 3-phase induction motor. [06]

OR

- Que-1 (A) A 415 V, 29.84 KW, 50 Hz delta connected motor gave the following test data: [08]

 No-load test: 415 V, 21 A, 1250 W

 Blocked rotor test: 100 V, 45 A, 2730 W

 Construct the circle diagram and determine (a) the line current and power factor for rated output (b) maximum torque. Assume rotor copper loss and stator copper loss
 - equal at standstill.

 (B) What are causes of harmonic production in 3-phase induction motor? Explain [04] crawling phenomenon in 3-phase induction motor.
- Que- 2 (A) Write the different methods to starting of squirrel-cage induction motor. Explain any [06] one in detail.
 - (B) The ratings of a 1- phase induction motor are as follows: 1 kW, 230 V, 50 Hz, 6- [05] pole and the parameters are given below:
 - i) resistance of main stator winding: 6 ohms
 - ii) reactance of main stator winding : 4Ω
 - iii) reactance of magnetizing branch referred to stator 100Ω
 - iv) rotor resistance referred to stator at standstill: 6Ω
 - v) rotor reactance referred to stator at stand still: 3.5 Ω

The core losses are 45 watts while mechanical losses are 20 watts. The motor is operating with 4% slip. Calculate (i) Input current (ii) Power factor (iii) Shaft power (iv) Efficiency.

OR

- Que- 2 (A) Describe the constructional features and operating characteristics of single phase [06] shaded pole motor.
 - (B) A 25 H.P, 500 V, 4 pole 50 Hz induction motor with delta connected stator takes full load current of 30 A and has a slip of 4 %. The impedance per phase is 3.5 Ω. Calculate the starting torque and starting current taken from the supply if the motor is started by (i) direct switching (ii) a star delta starter (iii) an auto transformer with 70 % tapping.

(A) (B) (C)	Discuss construction and working principle of BLDC motor. Compare Switched reluctance motor with variable reluctance stepper motor. Explain the rotor rheostat control of 3-phase slip ring induction motor with necessary figure. SECTION-II	
Making by	sin m8/2	[0]
Que-4 (A)	Explain pitch factor and distribution factor and also derive $K_d = \frac{\sin m\beta/2}{m \sin \beta/2}$	[06]
(B)	A 3-phase star connected 1000KVA, 11000V alternator has rated current of 50.5 A. The ac resistance of the winding per phase is 0.35 Ω . The test results are given below:	[06]
	O.C. Test: field current = 11.5 A, voltage between lines = 420 V	
	S.C. Test: field current = 11.5A, line current = 50.5A Determine the full load voltage regulation of the alternator for (i) 0.8 p.f lagging and (ii) 0.707 p.f leading loads with synchronous impedance method.	
Que-4 (A)	OR Define voltage regulation of an alternator & explain any one method to find the	[06]
Que 4 (IX)	voltage regulation.	
(B)	Which conditions must be satisfied for parallel operation of alternators? Explain Synchronizing of single phase Alternators.	
Que- 5 (A)	Explain the effect of varying excitation at constant load on synchronous motor.	[06]
(B)	Explain the distribution of load on alternator. OR	[05]
Que- 5 (A)	Explain construction and working principle of universal motor.	[06]
(B)	Explain following terms:	[05]
	(i) Damper Winding (ii) Hunting (iii) Synchronizing current and power (iv) Pull in and Pull out torque	
Que-6 (A) (B) (C)	Attempt following Questions. Explain different types of rotor used in alternator with necessary figure. Draw phasor diagram of loaded alternator at different power factor. Discuss V and inverted V curve of synchronous motor.	[12]
	ENID OF DADED	

Que-3

Attempt following Questions

[12]

END OF PAPER
Best of Luck