Total Marks: 70

GANPAT UNIVERSITY

Time: 3 Hours

B. Tech. Semester: IV Mechatronics Engineering Regular Examination April – June 2015 2MC403 Digital Circuits & Devices

Instruction:	1 2	All questions are compulsory. Specify assumptions made in answer sheet (if needed only).					
	3	Draw diagrams and tables neat and clean.					
		Section - I					
Que. 1		Attempt the following.					
		(a) Design a sequential circuit which produces output '1' if inputs are greater or equal to previous inputs. Assume two bits of input. Use JK					
		flip-flops. (b) Perform BCD addition operation of two numbers: (95) ₁₀ and (05) ₁₀ . [3]					
		(c) Using r's and (r-1)'s compliment method, find out compliment of [3] (C3DF) ₁₆ .					
		COS ANTO A COMPAN ANTONIA MANAGE OR MANAGEMENT AND A LIGHTER COS					
Que. 1		Attempt the following.					
		(a) Draw logic circuit diagram, state table and state diagram for following [6] state equations.					
		A(t+1) = x(y'+B) $B(t+1) = x(A+B')$					
		B(l+1) = x(A+D) $z = A$					
		(b) Determine the base in each case for the following operations to be correct. [3]	- Contract				
		I. 14/2=5					
		II. 24+17=40 (c) Express the following numbers to decimal. [3]					
		(c) Express the following numbers to decimal. 1. (16.5) ₁₆					
		II. (26.24) ₈					
Que. 2	2	Attempt the following.	1				
		(a) Explain SR Latch with circuit and function table. [4]					
		(b) Draw a four bit shift register circuit diagram and explain its working. [3]					
		(c) Draw and explain four bit ripple counter with D flip-flop. [4]					
		OR OR INSTRUMENT (b)					
Que.	2	Attempt the following.					
		(a) Explain serial adder circuitry with circuit diagram. [4]	- Personal				
		(b) What is the functional difference between D flip-flop, T flip-flop and JK [3 flip-flop? Elaborate your answer with help of examples.					
		(c) Draw and explain four bit ripple counter with JK flip-flop. [4]					

0 2	A 44	and ATT	[12]	
Que. 3		write a short note on ASCII and error detection codes.		
		The initial content of four bit shift register is 1101. The input to the shift register is 1010111. If the content of shift registers is shifted right for		
	(c)	six times, what will be its content at each instance? Design a BCD synchronous counter.		
		Section - II		
Que. 4	Atte	mpt the following.	[4]	
	(a)	Design and explain a circuit to add two 4 bit BCD numbers.	[4]	
	(b)	Design and explain a 4 to 1 line MUX.	[4]	
	(c)	Solve by K-map. $F(Q, W, E, R, T) = \Sigma(0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)$	[4]	
		OR		
Que. 4	Atte	empt the following.	[4]	<u> </u>
	(a)	Design and explain a circuit to add two bits with its implementations.	[4]	
	(b)	Design and explain quadruple 2 to 1 line multiplexer.		
	(c)	Simplify the following Boolean function using k-map & find answer in SOP & POS. $F(j, a, c, k) = \sum (0, 1, 2, 5, 8, 9, 10)$	(A11)	
Que. 5	Att	empt the following.		
	(a)	Solve by tabulation method and compare your answer with K-map.	[6]	
	(b)	$F(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 13)$ $F(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 13)$ $F(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 13)$ $F(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 13)$	[5]	
		OR		
Que. 5	At	tempt the following.	1(1)	
	(n)	Design & explain the Binary parallel adder with look ahead	[6]	
	(b)	carry generator. Design & explain the circuit for comparison between two 4 bit	[5]	alert-
Que. 6	A 4	binary. tempt ALL.	[12]	(
Que. o		E. L. Full adder with two decoders and OR gates.		
	(a)	DCD to decimal decoder		
	(b	DTI		
	(c	OD rote only with NAND gates		
	(d	i) implement an Ex-Oic gate only		

END OF PAPER