Seat	No.	

Ganpat University

B. Tech Semester - IV (ME/MC) Regular Examination April - June 2015

2HS401 ENGINEERING MATHEMATICS - III

Time: 3 hrs.

Marks: 70

- 1. All questions are compulsory.
- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

Section - I

Que: 1

[12]

- (A) Obtain Fourier series for $f(x) = x x^2$ in $-\pi \le x \le \pi$. Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$
 - (B) Obtain Fourier series for $f(x) = \begin{cases} \frac{\pi}{2} + x ; -\pi < x < 0 \\ \frac{\pi}{2} x ; 0 < x < \pi \end{cases}$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$

(C) Obtain Fourier series for $f(x) = e^{-x}$; $0 < x < 2\pi$

OR

Que:1

[12]

- (A) Obtain Fourier series for f(x) = x in $[-\pi, \pi]$. Hence deduce that $\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$
- (B) Obtain Fourier series for $f(x) = \begin{cases} l-x & ; 0 < x < l \\ 0 & ; l \le x \le 2l \end{cases}$.
- (C) An alternating current after passing through a rectifier has the form:

$$i(x) = \begin{cases} I_0 \sin x \; ; \; 0 < x < \pi \\ 0 \; ; \; \pi < x < 2\pi \end{cases}$$

 I_0 is the maximum current & period is $2\pi \, Express$ i(x) as a Fourier series

Que: 2

(A) Find: (i)
$$L \{ e^{-2t} \cos 5t \sin 3t \}$$
 (ii) $L^{-1} \{ \frac{3s+7}{s^2-2s-3} \}$. [04]

(B) If
$$L\{f(t)\} = \overline{f(s)}$$
 then Prove that $: L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} [\overline{f(s)}]$ [03]

(C) State Convolution theorem and apply it to evaluate
$$L^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$$
 [04]

OR

Que: 2

(A) Find: (i)
$$L\{t e^{2t} \cos 3t\}$$
 (ii) $L\{\frac{\cos at - \cos bt}{t}\}$ [04]

(B) Solve :
$$\frac{dy}{dt} - 4y = 2e^{2t} + e^{4t}$$
 by Laplace transform method where $y(0) = 0$ [03]

(C) Define Unit step Function . Express the following function in terms of unit step [04] function and find its Laplace transforms: $f(t) = \begin{cases} 0 & \text{; } t < 5 \\ t & \text{; } t \geq 5 \end{cases}$

Que: 3 Attempt any Three

[12]

- (A) Find the Fourier transform of $f(x) = \begin{cases} 1 & ; |x| < 1 \\ 0 & ; |x| > 1 \end{cases}$ Hence evaluate : $\int_{0}^{\infty} \frac{\sin x}{x} dx$.
- (B) Find the Fourier Co sine transform of $f(x) = e^{-2x} + 4e^{-3x}$.
- (C) Obtain Fourier series for $f(x) = x^2$ in $[0,\pi]$. Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$
- (D) Find: $L^{-1} \left\{ \frac{3s+1}{(s-1)(s^2+1)} \right\}$

Section - II

Que: 4

[12]

(A) Solve:
$$p(y^2z) + q(zx^2) = (xy^2)$$

(B) Obtain PDE from
$$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$$

(C) Find PDE from following equations by eliminating arbitrary constants. (i) z = ax + by + ab (ii) $z = (x^2 + a)(y^2 + b)$

2/3

Que: 4		[12]
(A)	Show that general solution of Lagrange's linear equation is $\emptyset(u,v)=0$ where	
	Ø is arbitrary function and u, v are solution of auxiliary equations.	
(B)	Solve $z_{xy} = \sin x \sin y$, subject to conditions $z_y = -\sin y \& z = 0$ when $x = 0$.	
Que: 5		[03]
(A)	Is the function $w = z^{-1}$ analytic? Justify.	[04]
(B)	State and prove Cauchy's theorem for contour integration.	
(C)	Prove $T_2 \cdot T_1$ is bilinear transformation if they are itself bilinear.	[04]
	Chiana Fearler series for Marine on	
	OR	
Que: 5		
(A)	Derive C - R equations in polar form.	[05]
(B)	If $u - v = (x - y)(x^2 + 4xy + y^2)$ and $f(z) = u + iv$ is an analytic function of	[06]
	z = x + iy find f(z) in terms of z.	
	Wence steamed that the second	
Que:6	Attempt any Three	[12]
(A)	Using Variation of parameter method solve $\frac{d^2y}{dx^2} + a^2y = \csc ax$	
(B)	$Solve: \frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$	
(C)	Solve simultaneous equations. $\frac{dx}{dt} = 5x + y$, $\frac{dy}{dt} = y - 4x$.	
(D)	$Solve: x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \cdot \log x$	

End of Paper