more: 27/05/2015.

Seat	No.	1 - 0:0
------	-----	---------

GANPAT UNIVERSITY

B. Tech Semester - IV (ALL) Regular Examination April - June 2015 Subject with Code: (20S401) VectorCalculus & Z - Transform

Time: 3 hrs.

Marks: 70

- 1. All questions are compulsory.
- Write answer of each section in separate answer books. 2.
- 3. Figures to the right indicate marks of questions.

Section - I

Que-1

(A) Find eigen values & eigen vector for matrix
$$A = \begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$$
 (5)

(B) Verify Cayley – Hamilton theorem for
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 (5)

(A) Is the matrix
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 is diagonalisable? (6)

(B) Obtain
$$A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$$
 for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$

Que - 2

(A) Prove:
$$Z(n^p) = (-z)\frac{d}{dz}\{Z(n^{p-1})\}$$
 and obtain expressions for $Z(n)$ and $Z(n^2)$. (6)

(B) Derive
$$Z(\sin n\theta) = \frac{z \sin \theta}{z^2 - 2z \cos \theta + 1}$$
 (3)

OR

Que - 2

- (A) State and prove Final value theorem and convolution theorm. (6)
- (B) Find $Z\left\{\frac{1}{(z-3)(z-2)}\right\}$ in the following domains (i) |z| < 2 (ii) 2 < |z| < 3 (iii) |z| > 3

Que - 3 Attempt any Three

- (A) If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$ then evaluate u_0 , u_1 , u_2 and u_3 . (4)
- (B) Prove $Z(n \cdot u_n) = (-z) \frac{d}{dz} \{U(z)\} \& using it find <math>Z(n \cdot \sin \theta)$ (4)
- (C) If $A = \begin{bmatrix} 3+i & 3+i \\ -3+i & 3-i \end{bmatrix}$ is $\frac{1}{20} \cdot A \cdot A^* = I_2$? (4)

Section - II

Que-4

- (A) Define del and gradient of scalar function. If f(x, y, z) = xyz (4) then find ∇f at point (1, 2, 3).
- (B) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + yz + zx then prove that $(grad\ u) \cdot [(grad\ v) \times (grad\ w)] = 0$
- (C) Define directional derivative and find it of $f = xy^2 + yz^3$ at point (2, -1, 1) in the direction of vector i + 2j + 3k.

OR

Que - 4

- (A) Find the angle between the normals to the surface $xy = z^2$ at points (4,1,2) and (3,3,-3).
- (B) Find $\nabla \emptyset$, where $\emptyset = (x^2 + y^2 + z^2) \cdot e^{\sqrt{x^2 + y^2 + z^2}}$ (4)
- (C) Prove that $\operatorname{div} \cdot [\operatorname{grad} r^n] = n(n+1) \cdot r^{n-2}$ (4)

Que-5

- (A) Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$; where C is bounded by y = x and $y = x^2$.
- (B) Verify Stokes' theorem for $F = (x^2 + y^2)i (2xy)j$ taken arround the rectangle bounded by $x = \pm a$, y = 0, y = b.

OR

Que-5

- (A) State Green's and Stokes' theorems. Prove that Green's theorem (5) is a particular case of Stokes' theorem.
- (B) State Divergence theorem and evalute $\iint \vec{F} \cdot d\vec{s}$ where $\vec{F} = (xy^2)i + (yz^2)j + (zx^2)k \& S$ is surface of $x^2 + y^2 + z^2 = 1$

Que - 6 Attempt any Three

- (A) Evaluate $\int_C (2y+3)i + (xz)j + (yz-x)k \cdot dr$ along line joining origin and point (2,1,1).
- (B) Show that $\vec{F} = (y^2 \cos x + z^3)i + (2y \sin x 4)j + (3xz^2 + 2)k$ is irrotational and find corresponding scalar point function such that $\vec{F} = \nabla \emptyset$.
- (C) Prove that $\operatorname{div}\left(\frac{\vec{r}}{r^3}\right) = 0$ where $\vec{r} = xi + yj + zk$ (4)
- (D) Determine constants a, b, c and d so that vector function $\vec{F} = (x + 2y + az)i + (bx 3y z)j + (4x + cy + 2z)k = 0$ is irrotational.

End of Paper