Date: 13/05/2019.

Student Exam No._

GANPAT UNIVERSITY

M. Tech. Semester: II (AMS/CAD-CAM) Mechanical Engineering

CBCS Regular Examination Apr-June 2017

3ME202 Engineering Optimization

Time: 3 Hours

Total Marks: 60

Instruction: 1. This Question paper has two sections.

- 2. Attempt each section in separate answer book.
- 3. Figures on right indicate marks.
- 4. Be precise and to the point in answering the descriptive questions.

Section - I

Que. 1

- (a) Discuss local optimum, global optimum and inflection point. (06)
 (b) Determine max and min value of the function (04)
 - (04)

 $f(x) = 12x^5 - 45x^4 + 40x^3 + 5$

OR

Que. 1

(a)	write necessary and sufficient condition for one dimensional optimization problem.	(05)
(b)	Show that xe^{-x} has the maximum value at $x = 1$.	(05)

Que. 2

(a)	Explain Taylor series	(05)
(b)	By Lagrange multiplier method	(05)
		1031

Maximize $Z = \pi x_1^2 x_2$

Subjected to $x_1^2 + x_1 x_2 - 12 = 0$.

OR

Que. 2

(<i>a</i>)	method.	(05)
(b)	What are Convex and Concave Function?	(05)

Que. 3 Do as directed

(b)

10)

Winita

(a) Find the Hassian matrix for following function (03)

$$f(x_1, x_2) = x_1^3 + 3x_1x_2^2 - 15x_1^2 - 15x_2^2 + 72$$

Find the stationary point of the function

(03)

$$f(x, y) = 3x^2 + y^2 + 12x - 6xy$$

(c) Use constrained variation method to maximize the volume of an open cone when the surface area of the cone is 20π (04)

Page No. 1/2

Section - II

Que. 4

-

- (a) Show how to solve optimization problem using Fibonacci method? (05)
- (b) Find the minimum of the function by using golden section methods in the interval (05) (0, 5)

$$f(x) = x^5 + 5x^3 - 20x + 5$$

OR

Que. 4 Find the minimum of f(x) = x(x - 1.5). By Interval Halving Method in the interval (10) (0.0, 1.0) to within 10% of the exact value.

Que. 5

- (a) Compare the ration of intervals of uncertainty $\frac{L_n}{L_0}$ obtainable in the following methods (05) for n = 2, 3, ..., 10.
 - 1. Exhaustive search
 - 2. Dichotomous search with $\delta = 10^{-4}$
 - 3. Interval halving method
- (b) Find the number of experiments to be conducted in the following methods to obtain a (05) value of $\frac{L_n}{L_0} = 0.001$.
 - 1. Exhaustive search
 - 2. Dichotomous search with $\delta = 10^{-4}$
 - 3. Interval halving method

Find the minimum of the function

OR

(10)

Que. 5

$$f(x) = 0.65 - \frac{0.75}{1 + x^2} - 0.65 x \tan^{-1}\left(\frac{1}{x}\right)$$

By exhaustive search in the interval (0, 3) to achieve an accuracy of within 5% of the exact value.

- Que. 6 Do as directed.
 - (a) Discuss Quadratic interpolation method. (05)
 - (b) Find the minimum of $f(x) = \frac{x(2x-3)}{2}$ with accelerated steps, starting with 0.0 with an (05) initial step size 0.05.

END OF PAPER

Page No. 2 / 2_