EXAM NO:

GANPAT UNIVERSITY

M. Tech. Semester II Mechanical Engineering(Advanced Manufacturing Techniques) **Regular Examination May-June: 2013**

3ME201 Computer Integrated Manufacturing

Time: 3 Hours

Total Marks: 70

AL OF OU

Instruction: (1) Answers of two sections must be written in the separate answer book.

(2) Draw neat sketches wherever necessary.

(3) Assume suitable additional data wherever necessary.

SECTION - I

1

A flexible manufacturing cell consists of three plus a load/unload stations. The load/unload station 06 (a) is stations1 using two servers (material handling workers). Station 2 performs milling operations and consists of two server (two CNC milling machine). Station 3 performs vertical milling operations with three servers (three identical CNC vertical milling machine). Station 4 has two server that performs drilling (two CNC drill press). The three stations are connected by a part handling system that has three work carrier. The mean transport time is 3.5 min. The FMC produces four parts A, B, C and D, the part mix fractions are process routings for the three parts are presented in the table below. The operation frequency $F_{ijk} = 1.0$ for all operations. Determine: a) maximum production rate of the FMC, b) corresponding production rates of each product.

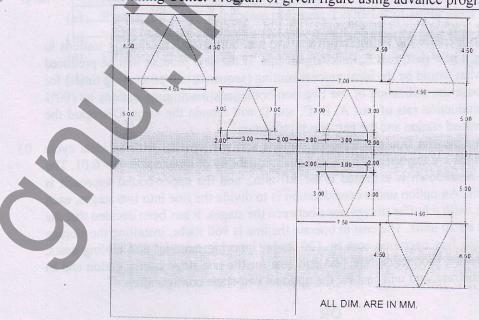
Part j	Part Mix Pj	Operation k	Description	Station i	Process Time t _{ijk} (min)
À	0.2	1	Load		4
		2	Mill	2	15
		3	V.Mill	3	14
		4	Drill	4	13
	The Revenues	5	Unload	1	3
B	0.3	1	Load	1	4
	- hideas he	2	Drill	4	12
	and comme	3	Mill	2	16
		4	V.Mill	3	11
		5	Drill	4	17
		6	Unload	1	3
С	0.5	1	Load	1	4
	A CONTRACTOR	2	Mill	2	10
	N TAXABLE N	3	Drill	4	9
		4	Unload	1	3
D	0.35	1	Load	1	4
		2	V.Mill	3	18
		3	Drill	4	8
		4	Unload	1	3

Suppose it is decided to increase the utilization of the two non-bottlenecks machining stations in the FMS by introducing a new past, part E, into the part mix. If the new product will be produced at a rate of 2 units/hr, what would be the ideal process routing (sequence and processing times) for part E that would increase the utilization of the two non-bottleneck machining stations to 100% each? The respective production rats of part A, B, C, and D will remain the same. Disregard the utilization of the load/unload station and the part handling system.

(b) A proposed synchronous transfer line will have 20 stations and will operate with an ideal cycle 05 time of 0.5 min. all stations are expected to have an equal probability of breakdown, p = 0.01. The average downtime per breakdown is expected to be 5.0 min., and the upper-bound approach is applicable in the analysis. An option under consideration is to divide the line into two stages, each stage having 10 stations, with a buffer storage zone between the stages. It has been decided that the storage capacity should be 20 units. The cost to operate the line is 960 Rs/hr. installing the storage buffer would increase the line operating cost by 120 Rs/hr. ignoring material and tooling costs, determine: a) line efficiency, production rate, and unit cost for the one-stage configuration and b) line efficiency, production rate, and unit cost for the optional two-stage configuration.

(a) An FMS is used to produce four parts. The FMS consists of one load/unload station and two 06 automated processing stations (Product X and Y). the number of servers for each station type is to be determined. The FMS also includes an automated conveyor system with individual carts to transport parts between servers. The carts move the parts from one server to the next, drop them off, and proceed to the next delivery task. Average time required per transfer is 3.5 min. and $(F_{ijk} = 1)$. the following table summarizes the FMS:

Station	Description	Number of Servers	
1	Load and Unload	Number of Human servers to be determined.	CHALLES.
2	Process X	Number of automated servers to be determined.	24 6 6 S & S
3	Process Y	Number of automated servers to be determined.	
4	Transport System	Number of carts to be determined.	


All the parts follow the same routings, which is $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$. The product mix and process times for the parts are presented in the table below:

Product j	Product Mix Pj	Station 1 (min)	Station 2 (min)	Station 3 (min)	Station 1 (min)
А	0.1	3	15	25	2
В	0.3	3	40	20	2
С	0.4	3	20	10	2
D	0.2	3	30	5	2

Required production is 10 parts/hr, distributed according to the product mix indicated. Use the bottleneck model to determine: a) the minimum number of servers at each station and the minimum number of carts in the transport system that is required to satisfy production demand b) the utilization of each station and c) production rate of individual product.

- A Flexible machining system is being planned that will consist of four workstations plus a part 05 (b) handling system. Station1 will be a load/unload station. Station 2 will consist of horizontal machining centers. Station 3 will consist of vertical machining centers. Station 4 will be an inspection station. For the part mix that will be processed by the FMS, the workloads at the four stations are WL1=8 min, WL2=23 min, WL3=16 min. and WL4=10 min. The workload of the part handling system WL5=9 min. The FMS will be operated 17 hr/day, 255 day/yr. Maintenance will be performed during non-production hours, so uptime proportion (availability) is expected to be 96%. Annual production of the system will be 65,000 parts; Determine the number of machines (servers) of each type (station) required to satisfy production requirements. And also determine a) the utilizations of each in the system for the specified production requirements and b) the maximum possible production rate of the system if the bottleneck station were to operate at 100% utilization.
- Write a CNC Machining Center Program of given figure using advance programming. 2 (a)

OL OF OH

1

(b) The From-To chart in the table below indicates the number of loads moved per 8-hr day 06 (above the slash) and the distances in feet (below the slash) between departments in a particular factory. Fork lift trucks are used to transport materials between departments. They move at an average speed = 275 ft/min. (loaded) and 350 ft/min. (empty). Load handling time per delivery is 1.5 min, and anticipated traffic factor = 0.9. Assume A = 0.95 and worker efficiency = 110%. Determine the number of trucks required under each of the following assumptions: a) the trucks never travel empty, and b) the truck travel empty a distance equal to their loaded distance.

			To Dept.			
		А	B	C	D	E
	А	-	62/500	51/450	45/350	0
	B	0	-	0	22/400	Ó
From Dept.	C	0	0		0	76/200 65/150
	D	0	0	0	-	65/150
	E	0	0	0	0	
		Long realized	OR			and the state

- (a) An automated guided vehicle system is being planned for a warehouse complex. The AGVS 06 2 will be driverless train system, and each train will consist of the towing vehicle plus four pulled carts. The speed of the train will be 160 ft/min. only the pulled carts carry loads. The averaged loaded travel distance per delivery cycle is 2000 ft and empty travel distance is the same. Anticipated travel factor = 0.95. The load handling time per train per delivery is expected to be 10 min. if the requirements on the AGVS are 25 carts loads/hr. determine the number of trains required. Assume A = 1.0Write a CNC Turning Center Program of given components. Raw Material size: 110 mm. X 40Ф.
 - CHANFER 350 109 5 45 60 100
 - Answer the following. (Any Three)

(b)

3

- What is a Storage buffer? Why storage buffer are used on automated production line? How (a) they control of production line.
- Explain the 10 principles of material handling in brief. (b)
- Enlist the types of AS/RS and explain its application in manufacturing industries. (c)
- (d) Different guidance techniques for AGV. Give detail of how SGV work
- (e) Explain Carousel Storage Systems.

SECTION – II

- Define Computer Integrated Manufacturing. Explain the roll of computers, integration and 4 06 (a) manufacturing to develop computer integrated manufacturing system with appropriate example.
 - With the help of neat sketch briefly explain co-relation of all importance elements of computer 06 (b) integrated manufacturing system.

12

06

(a)	Enlist different guidance techniques for AGV. Gi	ive detail of how SGV work	04	
(b)	Explain LAN concept its importance and differer		04	
(c)	Briefly define various terms to check the perform	nance of storage system	04	
S	With neat sketch explain the concept of CIM	Wheel with its strength and weaknesses also	06	
(a)		wheel with its strength and weathesses also		
	compare it with CIM enterprise wheel.	wine and justify that hatch production is mat	05	
(b)	Briefly explain different categories of manufactu	iring and justify that batch production is most	05	
	suitable for implementation of computer integrate		-	
	OR		10	
(a)	Explain consideration while designing material h	andling system.	04	
(b)	Brief out production flow analysis help in groupi	ng the parts.	04	
(c)	Explain help of support system in Manufacturing			
	Answer the following. (Any Three)		03 12	
	What is a Storage huffer? Why storage huffer	are used on automated production line? How		
(a)	What is a Storage buffer? Why storage buffer	are used on automated production time. Now		
	control of production line			
(b)	Define manual part programming. What is mea	nt by tool offset, tool length offset and cutter		
	diameter compensation?			
(c)	Shop floor data acquisition.			
(d)	Modulation and demodulation in communication			
(-)		ICTIONS (G CODES):		
	G00 – Rapid transverse positioning	G48 – Tool offset double decrease		
	G01 – Linear interpolation (federate movement)	G49 – Tool length compensation cancel		
	G02 – Circular interpolation clockwise	G50 – Scaling off		
	G03 - Circular interpolation counterclockwise	G51 – Scaling on		
	G04 – Dwell	G73 – Peak drilling cycle		
	G10 – Tool length offset value	G74 – Counter tapping cycle		
	G17 – Specifies X/Y plane	G76 – Fine boring cycle		
	G18 – Specifies X/Z plane	G80 – Canned cycle cancel		
	G19 – Specifies Y/Z plane	G81 – Drilling cycle G82 – Counter boring cycle		
	G20 – Inch data input (on some systems) G21 – Metric data input (on some systems)	G82 – Counter boring cycle G83 – Peak drilling cycle		
	G21 – Metric data input (on some systems) G22 – Salary zone programming	G84 – Tapping cycle		
	G22 – Salary Zone programming G23 – Cross through safety zone	G85 – Boring cycle (feed return to reference level)		
	G27 – Reference point return check	G86 – Boring cycle (rapid return to reference level)		
	G28 – Return to reference point	G87 – Back boring cycle		
	G29 – Return from reference point	G88 – Boring cycle (manual return)		
	G30 –Return to second reference point	G89 – Boring cycle (dwell before feed return)		
	G40 – Cutter diameter compensation cancel	G90 – Specifies absolute positioning		
	G41 – Cutter diameter compensation left	G91 – Specifies incremental positioning		
	G42 – Cutter diameter compensation right	G92 – Program absolute zero point		
	G43 – Tool length compensation positive direction	G94 – Feed rate in mm/min.		
	G44 – Tool length compensation negative direction	G95- Feed rate in mm/rev.		
	G45 – Tool offset increase	G98 – Return to initial level		
	G46 – Tool offset decrease	G99 – Return to reference (R) level.		
	G47 – Tool offset double increase	C (M) FUNCTIONS.		
		S (M) FUNCTIONS:		
	M00 – Program stop M01 – Optional stop	M17 – Spindle and coolant off (on some systems) M19 – Spindle orient and stop		
	M01 – Optional stop M02 – End of program (rewind tape)	M19 – Spindle orient and stop M21 – Mirror image X axis		
	M02 – End of program (rewind tape) M03 – Spindle start clockwise	M21 – Mirror image X axis M22 – Mirror image Y axis		
	M03 – Spindle start courterclockwise	M22 – Mirror image off		
	M05 – Spindle stop	M30 – End of program, memory reset		
	M06 – Tool change	M41 – Low range		
	M08 – Coolant on	M42 – High range		
	M09 – Coolant off	M48 – Override cancel off		
	M13 - Spindle on clockwise, coolant on (on some	M49 – Override cancel on		
	systems)	M98 – Jump to subroutine		
	M14 – Spindle on counterclockwise, coolant on	M99 – Return from subroutine		

OH OF 04