GANPAT UNIVERSITY M. TECH CAD/CAM SEM- I CBCS (NEW) REGULAR EXAMINATION NOV-DEC 2015 3ME 113 COMPUTER AIDED DESIGN

Max. Time: 3 hours

Deste: 06/03/2016.

Instructions:

- 1. Candidate can not keep with him any paper or book related to subject during the examination.
- 2. Center for written examination U.V.Patel College of Engineeering, Kherva.
- 3. Use of any electronic devices or programmable calculators is not allowed.

SECTION I

Oue	1	Attempt all	[10]
	(A)	Explain how CAD helps to synthesize a product design and do engineering	[5]
		analysis for getting optimal design.	[5]
	(B)	List the advantages of computer aided design.	[2]
		OR	
Que	1	Attempt all	[10]
	(A)	How does a CRT work?	[5]
	(B)	What are the functions of an interactive graphic design workstation?	[5]
Que	2	Attempt all	[10]
	(A)	Derive decision parameters for the Bresenham's circle generating algorithm assuming the starting point as $(0, 10)$ and generate the pixel positions for one forth of a circle.	[5]
	(B)	Write a C program for ellipse algorithm.	[5]
Que	2	Attempt all	[10]
	(A)	Calculate the pixe! locations for a line having starting point (5,5) to (12,-11) using DDA line algorithm.	[5]
	(B)	Write a C program for a Bezier curve.	[5]
Que	3	Attempt any two	[10]
		Explain GKS computer graphics standard	[5]
	(A)	Cive the requirements of product data exchange between dissimilar	[5]
	(D)	CAD/CAM systems	L]
	(())	Describe the structure of IGES file	[5]
	101		L 1

		SECTION II	
Que	4	Attempt all	[10]
	(A)	Show that two successive reflection about either of co-ordinates axis is	[5]
		equal to a single rotation about coordinate origin.	
	(B)	Perform 3-D transformation of the given position vector [3 2 1 1] by the following sequence of operations	[5]
		 (i) Translate by -1, -1, -1 in x, y, and z respectively (ii) Rotate by +30° about x-axis and +45° about y axis 	
		OR	
Que	4	Attempt all	[10]
	(A)	 A triangle ABC with vertices A(1,1), B(4,1) and C(3,3) is given. Perform the following transformation in sequence. a) Reflection about X axis. b) Rotation by 90°. 	[5]
	(B)	A scaling factor of 2 is applied in the Y direction while no scaling is applied in the X direction to the line whose two end points are at coordinates $(1, 3)$ and $(3,6)$. The line is to be rotated subsequently through 300°, in the	[5]
		counter clockwise direction. Determine the necessary transformation matrix for the operation and the new coordinates of the end points.	
Que	5	Attempt all	[10]
	(A)	Considering four dimensional position vectors for $P0((0,0), P1(2,2), P2(5,-2)$ and $P3(3,0)$, determine the cubic spline curve passing through them using chord approximation. The tangent vectors at the ends are $P1'(1,1)$ and $P4'(1,1)$. Calculate intermediate points at t=0.25 and t=0.6	[5]
	(B)	Differentiate between Bezier and B- spline surface with reference to number of control points, order of continuity and surface normal. OR	[5]
		Ø	[10]
Que	5	Attempt all	[10]
	(A)	Explain the engineering application of cubic splines. Circuit $D_{1}(1,2) = D_{1}(2,5) = D_{1}(2,5)$ and $D_{2}(4,2)$ determine 6 points on the Bezier	[ɔ];
	(B)	Given $B_0(1,2), B_2(2,5), B_3(6,5)$ and $B_4(4,2)$ determine 6 points on the Bezier curve.	[3]
Que	6	Attempt any two	[10]
	(A)	Using Freudenstein's equation solve the function generator $y=x.sinx$ over the range $1 \le x \le 2$, using three precision points.	[5]
	(B)	Write a note on B-Spline.	[5]
	(C)	Specify the three principal classifications of the geometric modeling systems and write in brief about each of them.	[5]

-

END OF PAPER