Student Exam No.

GANPAT UNIVERSITY M. TECH. II SEM. (CAD/CAM) MECHANICAL ENGINEERING **CBCS REGULAR EXAMINATION APRIL-JUNE 2016 3ME211 ENGINEERING ANALYSIS & OPTIMIZATION**

Time: 3 Hours

()

)

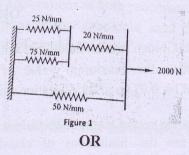
Total Marks: 60

3

7

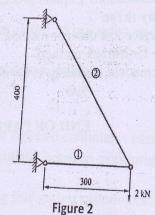
3

5


5

- Instruction: 1 Attempt all questions.
 - 2 Make suitable assumptions wherever necessary.
 - 3 Figures to the right indicate full marks.

0-1


Section I

- Discuss shape function with respect to one dimensional problem (a)
- State the principle of minimum (stationary) potential energy and apply (b) the same to determine nodal displacement of the spring system shown in Figure 1.

0-1

A two member truss is shown in Figure 2. The cross-sectional area of (a) each member of the truss is 100 mm² and the modulus of elasticity is 200 7 GPa. Determine the deflections, reactions and stresses in each of the members.

0	1
U	-2

(b)

- What is FEM? What are the advantages and limitations of the method?
- Explain the properties of stiffness matrix K. (a)
- What is FEM? Sketch the different types of elements used in finite 5 (b) element analysis (1D, 2D and 3D). 5

OR

Q-2

- Explain the temperature effect in one dimensional problem. (a) (b)
 - Explain the elimination approach of imposing boundary conditions.

Q-3

0-4

- (a) Consider a brick wall of thickness L = 30 cm, $k = 0.7 \text{ W/m}^{0}\text{C}$. The inner surface is at 28[°]C and the outer surface is exposed to cold air at -15[°]C. The heat-transfer coefficient associated with the outside surface is $h = 40 \text{ W/m}^{2.°}\text{C}$. Determine the steady state temperature distribution within the wall.
- (b) Explain how the model and apply boundary conditions to following 4 types of problem:
 - 1. Hollow cylinder under internal pressure, with one end closed.
 - 2. Belleville Spring.

Section II

Q-4	(a) (b)	Explain Fibonacci method of optimization. Find the minimum of the function $f(\lambda) = 0.65 - \frac{0.75}{1+\lambda^2} - 0.65\lambda \tan^{-1}\frac{1}{\lambda}$	55
		using the secant method with an initial step size of $t0 = 0.1$, $\lambda I = 0.0$, and $\varepsilon = 0.01$.	
		OR	
Q-4		The third of antimization	5
	(a)	Explain Golden section method of optimization.	5
	(b)	Determine the maximum value of the function $f(x) = x \cos \pi x^2$ in	
		interval [0, 0.7] up to four iteration using Fibonacci method.	
Q-5			5
	(a)	What is the secant method? Explain it.	5
	(b)	What are the limitations of classical methods in solving a one-	5
		dimensional minimization problem?	
		OR	
Q-5		the time of ontimization	5
	(a)	Write the engineering applications of optimization.	5 5
	(b)	What is optimization? Explain processor for optimization of problem?	10
Q-6	·	Attempt any three	10
	(a)	Explain the steepest descent method.	
	(b)	Explain the Univariate method.	
	(c)	How mathematical modeling is use full in engineering optimization?	

END OF PAPER

Page 2 of 2

6

Q.ť

Ç

Q

Q.

Q.: