Ganpat University M. Tech. III Sem. (AMT and CAD/CAM) Regular Examination Nov. 2014 3ME301/3ME311 Research Methodology

Time:		70
(2) Rig (3) Onl	questions are compulsory. the figure indicate full marks. ly scientific calculator is allowed. the tables provided at the end of paper for appropriate question.	
	SECTION-I	
Que.1 (a)	Attempt the followings. Explain significance of research in detail.	[4]
(b)	Distinguish clearly between research methods and methodology.	[4]
(c)	Give your understanding of a good research design. Is single research design suitable in all research studies? If not, why?	[4]
	OR	
Que,1	Attempt the followings.	
(a)	Explain research process stepwise with the help of flow chart in detail.	[6]
(b)	Write a short (1-2) page paper on the literature review in your area of research. Also explain the outcome of your literature review in brief.	[6]
0	Assemble of the fellowings	
Que.2	Attempt the followings.	[4]
(a)	Define how you will define your research problem.	[4]
(b)	Explain the technique involved in defining a research problem.	[3]
(c)	What do you mean by research design? Explain need for research design.	
0 4	OR	
Que.2	Attempt the followings.	(4)
(a)	Explain Delphi method as a problem solving technique used for idea generation.	[4]
(b)	Explain different categories of research design in brief.	[4]
(c)	Explain different steps involved in sample design.	[3]
		r
Que.3	Attempt any three.	[12]
(a)	Explain personal interview method for data collection with their chief merits and weaknesses.	
(b)	Explain sources of error in measurement. Also explain test of reliability.	
(e)	Differentiate between model and mathematical model. Explain importance of mathematical model. Also explain model classification in mathematics.	
(d)	Define heuristic. Explain trade off criteria for deciding whether to use a heuristic for solving a given problem.	

SECTION-II

Attempt the followings. Oue.4

The following are the numbers of artefacts dug up by two archaeologists at an ancient cliff [4] (a) dwelling on 30 days.

Г	vI	1	Т	Λ		2	1	Λ	2	2	3	Λ	1	1	4	1	2	1	3	5	2	1	3	2	4	1	3	2	0	2	4	2
L	Δ		1	띡		2	1		4	14	-		<u> </u>	+	1	-	- آ	Î	1 2	2	-	^	2	2	^	2	1	0	1	n	1	0
	Y	0	1	0	1	0	2	0	0	1	1	2	0	1	2	1	1	U	2	12	0	U	4	3	L			v	L <u>.</u>	۳		0

Use the sign test at 1% level of significance to test the null hypothesis that the two archaeologists, X and Y, are equally good at finding artefacts against the alternative hypothesis that X is better.

The heights of six randomly chosen sailors are, in inches, 63, 65, 58, 69, 71 and 72. The (b) heights of 10randomly chosen soldiers are, in inches, 61, 62, 65, 66, 69, 69, 70, 71, 72 and 73. Do these figures indicate that soldiers are on an average shorter than sailors? Test at 5% level of significance.

In a certain before-after experiment the responses obtained from 1000 respondents, when [4] (c) classified, gave the following information.

	After Treatment							
Before Treatment	Unfavourable responses	Favourable responses						
Favourable responses	200	300						
Unfavourable responses	400	100						

Test at 5% level of significance, whether there has been a significant change in people's attitude before and after the concerning experiment using McNemer Test.

OR)

Attempt the followings. Oue.4

A sample of 400 male students is found to have a mean height 67.47 inches. Can it be [4] (a) reasonably regarded as a sample from a large population with mean height 67.39 inches and standard deviation 1.30 inches? Test at 5% level of significance.

"It is only through interpretation the researcher can expose the relations and processes that [4] (b) underlie his findings". Explain, giving examples.

[4] Write down limitations of hypothesis testing. (c)

Attempt the followings. Que.5

Present your conclusions after doing analysis of variance to the following results of the [5] (a) Latin-square design experiment conducted in respect of five fertilizers which were used on plots of different fertility.

ν					
	A	В	С	D	Е
Ì	16	10	11	9	9
	Е	С	A	В	D
	10	9	14	12	11
	В	D	E	С	Α
i	15	8	8	10	18
ļ	D	Е	В	Λ	C
-	12	6	13	13_	12
	С	A	D	Е	В
	13	11	10	7	14

Setup ANOVA table for the following information relating to three drugs testing to judge the [6] (b)

effectiveness in reducing blood pressure for three different groups of people:

	ļ		Drugs	
		X	Y	Z
	A	14	10	11
Communication of December 1	A	15	9	11
Group of People	n	12	7	10
t like a salah liga sa	В	11	8	11
M.	С	10	11	8
	U	11	11	7

- (i) Do the drugs act differently?
- (ii) Are the different groups of people affected differently?
- (iii) Is the interaction term significant?

Answer the above questions taking a significant level of 5%.

OR

Oue.5 Attempt the followings.

Present your conclusions after doing analysis of variance to the following results of the [5] (a) Latin-square design experiment conducted in respect of five fertilizers which were used on plots of different fertility.

12				g
A	В	С	D	E
12	10	11	9	8
E	C 9	Α	В	D
10	9	14	12	11
В	D 8	E,46	C	A
15	8	18	10	18
D	E 6	В	A	С
12	6	13	13	12
12 C	A	D	Е	В
13	11	10	7	14

(b) Setup ANOVA table for the following information relating to three drugs testing to judge the effectiveness in reducing blood pressure for three different groups of people:

			Drugs	
		X	Y	Z
	٨	14	10	11
Group of Boonla	А	15	9	11
Group of People	D	12	7	10
	В	11	8	11
	С	10	11	8
		11	11	7

- (i) Do the drugs act differently?
- (ii) Are the different groups of people affected differently?
- (iii) Is the interaction term significant?

Answer the above questions taking a significant level of 1%.

[12]

Que.6 Attempt any three

- Write a short note on ANCOVA technique. (a)
- Enlist the precautions to be taken care of while writing research reports. (b)

- (c) Explain the following with an example.
 - (i) One-tailed and two-tailed tests
 - (ii) Type I and Type II errors in hypothesis testing
 - (iii) Power of hypothesis test
 - (iv) Parametric and non-parametric tests
- (d) What is Experimental design? Explain inter-related activities involved in design of an experiments.

Table:1 z-distribution

	0 =	100	. <u>J</u> 2*	03	.04	D3	.06	. 07	.08	.09
.o.	.0000	0040	.0080	.0120	,0160	0199	.0239	.0279	0319	0359
	0108)	0438	.C478	05:7	.0557	.0596	.0636	.0675	0714	.0753
.1 .2	.01793 .0793	0832	C871	(010	0948	0987	.1026	.1064	1103	1141
3	1179	1217	1255	1293	.1331	.1368	1406	.1443	.1450	1517
4	1354	1591	1628	1664	1700	1736	.1772	1508	1844	1879
5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
5.4	2257	2291	.2324	2357	2389	2422	2454	2486	. 2517	2549
J	2180	2611	.2642	2673	2903	2734	.2764	2754	.2823	2852
.8	2881	2910	.2939	2967	2095	3023	.3051	.3078	.3106	3133
9	3150	3186	3212	3218	3264	2289	3315	3340	.3365	3389
1.0	3413	3438	3461	3485	3508	3531	3554	3577	3509	3621
1.1	3643	3665	.3686	.3708	3729	3749	J770	3790	3810	3830
1.2	3849	3869	.3888	2907	3025	3944	3952	3980	3097	.4015
1.3	4032	4049	.4066	2032	4000	4115	J131	4147	<i>4</i> 162	417
1.4	4192	4207	.4222	4236	.4251	.4265	4279	4292	.4306	4319
1.5	4332	4345	4357	4370	.4382	.4394	.4 4 06	4418	.4429	444.
1.6	4452	4/163	.4474	1121	1195	./505	:1515	4525	.1525	454
17	4551	4561	4573	4587	4591	4599	140,18	4616	4675	463
1.8	.4641	4649	.4636	4664	.46 <i>/</i> 1	.45/8	4636	.4693	.4659	4,0
1.9	4713	4719	.4726	4732	.4738	.4744	.4750	4756	.4761	.476
2.0	.4772	4778	.4783	,4788	.4793	.4798	.4803	.4808	.4812	.481
2.1	.4821	4826	.4830	.4834	.4838	.4842	.4816	.4850	.4824	.48D
2.2	.4861	4864	.4868	.4871	.4875	.4878	.4831	.4884	.4887	.489
23	.4693	4096	4898	4901	.4504	.4906	.4909	.4911	.4913	491
2.1	.1918	.1920	.1012	.1925	.1927	/029	.4931	.1932	.1931	493
25	4938	4940	4941	4913	4Ç45	4 94 6	4948	4540	49 *1	495
2.6	4953	4955	.4956	.4957	.4959	.4960	4951	.4902	.4903	.490
17 /	4065	4966	.4067	.4968	.4560	4970	.4971	.4972	.4073	497
78	4974	4975	4976	4977	4977	4978	4979	4979	4980	408
Ų	4581	4982	.4982	.4983	.4584	4984	4935	4980	.4986	498
3.0	.4987	4987	.4987	.4988	.4988	.4989	,49 89	.4989	.4990	.499

Table:2 t-distribution

	(Critical Value	s of Student's	i-Di stributk)fi	
		Level of sig	nificance for tw	o-tailed test		200 200 200 200 200 200 200 200 200 200
df	020	0.10	0.05	0.02	0.01	df
		Level of a	mitcance for on	e-failed text		
	0.10	0.05	0.025	0.01	0.005	
						740
l.	3.078	6.314	12.706	31.821	63.657	L.
2	1.886	2920	4303	6.965	9.925	$\leq 4^{2}$
	1.638	2.353	3.182	4541	5.841	
÷	1533	2132	2776.	3.747	4,604	4
- 4	1476	2.015	2571	3.365	4.032	<u> </u>
6	1.440	1.943	2.447	-3.143	3.707	6
7	2., 1.415	1.895	2365	2.998	3.499	7/.
8	1.397	1,860	2306	2.896	3.355	7 8
9	1.383	1.833	2.262	2.821	3.250	9 193
10	1.372	1.812	2.228	2.764	3.169	10
-11	1.363	1.796	2.201	2718	3.106	4 4
12	1.356	1.782	2179	2.681	3.055	12
13	1.350	1.771	2160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.731	2.602	2.947	15
16	1,337	1.746	2.120	2,583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2,539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
2 L	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	2
23	1319	1.714	2.069	2.500	2.807	_
24	1318	1.711	2.064	2.492	2.797	24
ජ	1316	1.708	2.060	2.485	2.787	25
26	1315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	-1 28
29	1311	1.699	2.045	2.462	2.75 6	-9 29
Infinity	1.282	1.645	1960	2326	2.576	-/ Infinity

Table:3 F-distribution

Critical Values of F-Distribution (at 5 per cent)														
V.	100	2	1	4 3	5	6	8	12:	4					
			- 16				710 0 ***	2419	749 1644	143312				
1	Maria Salah Salah		215 /	1925	1930	10 33	19.37	1941-24	19.45	19.50				
215	18.51	19.00	19.16	912	901	8.94	8.85	8.74	8.64	8.53				
73	10.13	9.55	9.28 6.59	6.39	626	6.16	6.04	5.91	577	5.63				
4	7.71	694	541	5.19	5.05	4.95	482	4.68	453	436				
5	6.61	5.79 5.14	476	4.53	4.39	4.28	415	4.00	3.84	3.67				
6.	599	4.74	435	4.12	3.97	3.87	3.73	3.57	341	323				
7. 8	5.59 5.32	4.46	4.07	3.84	3,69	3.58	3.44	3.28	3.12	293				
9	5.12	426	3.86	3.63	3.48	3.37	3.23	3.07	290	2.71				
10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	274	254				
110	4.84	3.98	3.59	3.36	3.20	3.09%	295	2.79	2.61	2.40				
12	4.75	3.88	3.49	326	311	3.00	2.85	2.69	251	230				
13	4.67	3.80	341		3.02	1 292 ;	277	2.60	242	221				
14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	235	2.13				
15	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07				
16	4.49	3,63	324	3.01	285	2.74	2.59	2.42	2.24	2.01				
17	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	219	1.96				
18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	215	192				
19	4.38	3.52	3.13	2.90	1274	2.63	2.48	231	211	1.88				
20	4.35	3.49	3.10	2.87	271	2.60	2.45	2.28	2.08	1.84				
21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81				
22	4.30	3.44	3.05	2.82	2.66	2.55	2.40	2.23	203	1.78				
23	4.28	3.42	3.03	2.80	2.64	2.53	2.38	2.20	201	1.76				
24	4.26	3,40	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73				
ප	4.24	3.38	2.99	2.76	2.60	2.49	2.34	2.16	1.96	1.71				
26	4.22	3.37	2.98	2:74	2.59	2.47	2.32	2.15	1.95	1.69				
27	4.21	3.35	2.96	2.73	2.57	2.46	2.31	2.13	1.93	1.67				
28	4.20	334	2.95	2.71	2.56	2.45	2.29	2.12	1.91	1.65				
29	4.18	3.33	2.93	2.70	2.54	2.43		2.10	1.90	1.64				
30	4,17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62				
40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.00	1.79	151				
60	4.00	3,15	2.76	2.52	2.37	2.25	2.10	1.92	1.70	1.39				
120	3.92		2.68	2.45			2.02	1.83	1.61	1.25				
	3.84	2.99	2.60	2.37	2.21	2.10	1.94	1.75	152	1.00				

**** END OF PAPER ****