Student Exam No.

Ganpat University M.Tech SEM III (CAD/CAM) Mechanical Engineering Regular Examination November / December 2016 3ME312 Dynamics of Mechanical System

Duration: 3hr

Marks: 60

[06]

[04]

Instructions:

- 1. Assume suitable data if it is necessary.
- 2. Write your answer to the point and precisely.
- 3. Draw neat and clean sketch.

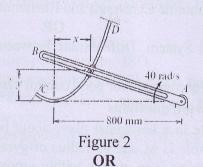
SECTION - 1

- Attempt following questions
 - (a) Derive the frenets' formula for curvilinear coordinates.
- (b) Write a short note on rectangular coordinate system.

OR

Q.1 Attempt following questions

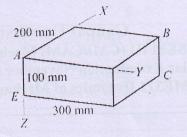
0.1


Q.2

- (a) Write a short note on curvilinear coordinate system and also on tangential and [06] normal vector.
- (b) A particle moves along the surface $z = (x^2 y^2)/L$ such that [04] $x = L\cos(\beta\xi)$, $y = L\sin(\beta\xi)$, where β and L are constants and ξ is a parameter. Consider the case in which $\xi = t$. Derive expressions for the velocity and acceleration.

Q.2 Attempt following question

Arm *AB* rotates clockwise at the constant rate of 30 rad/s as it pushes the [10] slider along guide *CD*, which is described by $y = x^2/300$ (x and y are in millimeters) as shown in figure 2. Determine the velocity and acceleration of the slider when it is at the position


x = 250 mm.

Attempt following question

Starting from the position shown in figure 2 OR, the box is rotated by 40° [10] about face diagonal *AB*, clockwise as viewed from corner *B* toward corner *A*. Determine the coordinates of corner *C* relative to the fixed reference frame after this rotation.

Page 1 of 2

Figure 2 OR

Attempt following questions

- Derive velocity expression for spherical coordinate system with sketch. **(a)**
- Write a short note on cylindrical coordinate system. (b)

SECTION - II

Attempt following question Q.4

The disc spins about shaft AB at the constant rate ω_1 , where the vertical [10] shaft, to which shaft AB is pinned, rotates freely. The masses are m1 for the disk and m₂ for shaft AB. Derive the equation of motion.

OR

Q.

4	(a)	A horizontal force $F(t)$ is applied to the end of the compound pendulum whose pivot is given a specified horizontal displacement $x(t)$. Generalized coordinates are the absolute angle of rotation θ_1 for the upper bar and the relative angle θ_2 for the lower arm. Determine the corresponding generalizes	[08]
.5	(b) (a)	relative angle θ_2 for the lower and. Determine the correspondence of the forces. Evaluate Holonomic and Nonholonomic Constraint The crankshaft AB is given a virtual rotation $\delta\theta$ when it is at an arbitrary orientation θ . Determine the corresponding virtual displacement of the	[02] [08]
	(b)	piston. Evaluate Scleronomic Constraint and Rhenomic Constraint OR	[02]
.5	(a)	Define Control System. Differentiate between open loop system and close	[06]
	(b)	loop system What are the requirements for good control system?	[04]
.6		Attempt following questions	1001

Q.6

0

Q

[08] The table rotate in a horizontal plane about bearing A due to a torque $\tau(t)$. **(a)** The mass of table is M and its radius of gyration about its centre is k. The slider, whose mass is m, moves within groove BC under the restraint of a pair of springs which are unstretched in the position. Derive the equation of motion for this system. [02]

Evaluate Holonomic Constraint and Nonholonomic Constraint (b)

END OF PAPER

Page 2 of 2

[10]

Q.3