Page 1 of 4

Seat No

GANPAT UNIVERSITY M.Tech. Semester I Examination Jan-Feb - 2012 **PGCE–101:** Advance Topics in Networks

Max Time : 3 Hour]

Instructions:

1. All questions are compulsory

- 2. Figures to the right indicate full marks.
- 3. Answer Both Sections in Separate Answer sheets.

SECTION-I

Q-1

Prove theorem: Expected message delivery time for optimal algorithm [A] (single copy) ED_{opt}(mm) is given by

$$ED_{opt}^{(mm)} = \frac{H_{M-1}}{(M-1)}EM_{mm},$$

Where H_k is the kth Harmonic Number.

- Compute delivery delay of Source spray and wait routing for Random walk [**B**] mobility model. Area = 700×700 , Nodes = 30, communication range = 20, message copies = 12
- Calculate the delay of Randomize routing for area =8100, transmission range = 10, 4 **[C]** no. of nodes = 30, P= 0.7

[OR]

Q-1

Prove lemma: Message is currently with node A at distance rA from its destination, 4 [A] and that another node B is encountered. Both the node uses Seek and Focus routing , with a one to one utility function U(.), focus threshold Uf and $tf = U^{-1}(U_f)$. then

 $p_{tx}(r_A \rightarrow r_B)$ equals to

$$p_{tx}(r_A \to r_B) = \sum_{t_A < t_f} \sum_{t_B < t_A} \frac{u(r_A \ t_A)u(t_A)u(r_B | t_B)u(t_B)}{u(r_A)u(|r_B - r_A| \le K \ t_B)} + p \sum_{t_A \ge t_f} \frac{u(r_A | t_A)u(t_A)u(r_B)}{u(r_A)u(|r_B - r_A| \le K)}.$$

- [B] Compute delivery delay of Binary spray and wait routing for Random walk 4 mobility model. Area = 700×700 , Nodes = 30, communication range = 20, message copies = 12
- **Compute expected delay** for direct transmission given random walk mobility 4 model, Network area = 6400, transmission range = 5 no. of nodes = 20

[Total Marks: 70

4

12

12

Q-2

[A] The expected hitting time ^{ET(m)}_{comm} until a node A, moving according to the ⁴ community model, encounters a static node B, who lies inside A's community, is given by:

$$\mathrm{ET}_{\mathrm{commn}}^{\mathrm{(in)}} \approx \frac{1}{1 - \left[\left(1 - p_{\mathrm{hit}}^{l} \right)^{n_{\mathrm{I}}} \left(1 - p_{\mathrm{hit}}^{r} \right)^{n_{\mathrm{r}}} \right]} (\pi_{\mathrm{I}} \overline{T}_{\mathrm{I}} + \pi_{\mathrm{r}} \overline{T}_{\mathrm{r}})$$

where $p_{\text{hit}}^{\text{I}} = 2K\overline{L}/N$ and $p_{\text{hit}}^{l} = p_{\text{hit}}^{r}/c$.

- [B] Compute Hitting time and Meeting time for random direction mobility model : N= 400 x 400 K=10, Avg.time=200, Avg. speed= 1 m/sec.and pause time =20
- [C] Derive an equation to compute average encounter rate for random way point mobility model with reference to analytical model.

[OR]

Q-2 [A]

Prove theorem: The **expected hitting time** ET_{comm}^(out) until a node A, moving according to the community model, encounters a static node B, who lies outside A's community, is given by:

$$\mathrm{ET}_{\mathrm{comm}}^{(\mathrm{out})} = \mathrm{ET}_{\mathrm{rd}} + \frac{1 - p_{\mathrm{r}}}{1 - p_{\mathrm{l}}} \frac{N}{2K\overline{L}}\overline{T}_{\mathrm{l}}.$$

- [B] Calculate Hitting time for (small) community based random direction model : Area= 500 x 500, P_{local}= 0.8, P_{roaming}=0.2, Tl = 150, Transmission range =10, Average speed = 1 m/sec.
- [C] Analytically compute AER(encounters/min) for random way point mobility model: 3 Communication range= 100m, Node Density = 50, Average Speed = 30 m/s and time = 10 sec
- Q-3

[A] Compute pairwise meeting rate p for RD & RWP and packet forwarding rate for 4 n-epidemic routing : Avg. relative speed = 3 m/sec, Area = 500x500, transmission range = 10, battery enegery = 1000 units/node, energy consumed =4 unit transmit/receive, number of forwards =5, neighbours=3.

- [B] Write pseudo code for SBR-DTN
- [C] Why ADHOC/MANET routing protocols fails in DTN environment?Find average 4 delivery predictabilities from node A to node B after second encounter. [For Spray & wait with prophet] P_{init} = 0.50, t1=20, t2=50.

4

3

11

Page 2 of 4

12

SECTION – II

Q-4

- [A] Draw schematic diagram of Internet Vs. DTN Routing. Name the strategy used for information exchange. List the class of service (CoS) provided by Bundle layer.
- [B] **Perform BoGu's classification of mobility models** for each of following scenario with short justification:
 - 1.Human walk patterns
 - 2. Disaster Recovery
 - 3. Freeway & city block/section scenario
 - 4.Heterogeneous random walk
- [C] For given social network, prepare interaction and connectivity matrix for threshold 4 =0.50. Identify at least two communities from connectivity matrix and write an equation to compute social attraction index.

Q-4

- [A] Show the classification chart of mobility models and Identify the mobility model type 4 for each scenario presented below with short justification:
 - 1.Police officers attempting to catch escaped criminal
 - 2.Group of children walking in single line to their classroom
 - 3.Cellular network
 - 4.Class of student touring an art museum
- [B] Draw schematic diagram of ONE simulator along with routing and movement package 4 classification.
- [C] Compute $EV_A \& EV_B$ for given $CWC_A=20$, $CWC_B=40$, $\dot{\alpha}=0.85$, $EV_A=5 \& EV_B=10$ using encounter based routing. Suppose node A has 12 copies of Message M1 and 10 copies of message M2. How many copies of each messages node A transmits to Node B

Q.5

11

3

12

- [A] How to improve PROPHET ? Write the pseudo code for PROPHET+
- [B] Following table shows the current message vectors for Node A and Node B 4 respectively. Show respective message vector's contents after encounter with each other for epidemic routing.

Node A		
Dest Id	Seq.No	
D	1	
G	1	
F	1	

Node B			
Dest ID	Seq No		
D	0		
Е	0		
F	0		
F	and I show		
	and the second se		

Write pseudo code for two hop routing protocol.

[C]

Prepare the table of comparison for following drop and forwarding policies .

E	Mathod	Prons	Cons
Forwarding Policy	Methou	I I UIAS	
TSMF			
COIN			

Dron Policy	Method	Prons	Cons
N-drop			
MOFO			

[OR]

Q-5

[A] Prepare the table of comparison for following drop and forwarding policies.

Drop Policy	Method	Prons	Cons
MOPR			,
LEPR	Charles Browne		

Forwarding	Method	Prons	Cons
Policy			and the second second second
GRTR			t animant in stanting to

Show the classification chart of mobility models and list mobility metrics. **[B]**

- Write pseudo code for large message fragmentation. [C]
- Q.6

12

3

4

11

4

Write an equation to compute expected delay for Epidemic routing using accordion 4 [A] phenomenon. Use the coloring process to recursively compute s(p) [i.e. Aggregated neighbors of given node.] 4

Compute the **delivery predictability** new values for $P_{A,B}P_{B,C}$, $P_{A,C}$ **[B]**

 $P_{init} = 0.75, \beta = 0.25$

From/To	В	C
A	0.7	0.3
B	0.5	0.5

[C] How to make Encounter based routing protocol secure? Discuss Time stamp 4 protocol with suitable example & diagram.