Total Marks: 60

GANPAT UNIVERSITY

M. TECH SEM. I (COMPUTER ENGINEERING)

CBCS REGULAR EXAMINATION NOV – DEC 2017

3CE101: COMPUTATIONAL INTELLIGENCE

Total Time: 3 hours

Instruction	2. Figure to the right indicates full marks.3. Assume suitable data wherever necessary.	
	SECTION – I	
Q – 1 (a)	Discuss the following terms with example: i) Knowledge ii) Combinatorial explosion iii) Heuristic function iv) Ridge	(4)
(b)	You are given two jugs of water, 4-litre and 3-litre. Neither has any measuring mark on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2-litre of water into the 4-litre jug? Solve and suggest the appropriate strategy for the given water-jug problem.	(6)
	OR	
Q-1 (a)	Solve the 4-Queens problem using state space search. Draw the entire state space search tree.	(6)
(b)	Describe the simulated annealing approach.	(4)
Q-2(a)	Explain with an example of a problem for which depth first search would work better than breadth first search.	(5)
(b)	Describe the problem of over-estimation and under-estimation with A* algorithm.	(5)
	OR	
Q-2(a)	Discuss hill-climbing approach along with its disadvantages.	(4)
(b)	Consider the following 8-puzzle problem. Solve it by applying appropriate heuristic function. Show each solution step.	(6)
	1 2 3 8 5 6 4 7 Initial Goal	
Q-3(a)	Check whether the following problems are decomposable or not. Justify your answers also: i) Chess ii) Tower of Hanoi iii) Water-jug iv) 8-puzzle	(4)
(b)	Explain best first search with example.	(4)
(c)	Discuss the characteristics of control strategy.	(2)

SECTION – II

Q-4(a)	Solve the following problem using constraint satisfaction:	(6)	
	DONALD		
	+ GERALD		
	ROBERT		
(b)	Explain the following terms with respect to fuzzy logic i) Grade of membership ii) Universe of discourse	(4)	
	OR		
Q - 4(a)	Discuss α - β pruning with appropriate example.	(5)	
(b)	Explain various membership functions used for fuzzy logic.	(5)	
Q – 5 (a)	Train a perceptron using perceptron learning rule for logical AND gate truth table. Perform 2 epochs. Initial weights and bias are zero. Assume learning rate of 0.5. If required, assume suitable data and clearly mention the assumptions.	(6)	
(b)	Differentiate between the followings: i) Supervised learning v/s Unsupervised learning ii) Biological neural network v/s Artificial neural network	(4)	
	OR		
Q-5 (a)	Develop an ADALINE network for the following data with bipolar inputs and bipolar targets. Assume initial weights and bias as 0.3. Set learning rate 0.4. Calculate up to 2 epochs and find average mean squared error.	(8)	
	$\begin{array}{c cccc} X_1 & X_2 & T \\ \hline 1 & 1 & 1 \\ \hline 1 & -1 & -1 \\ \hline -1 & 1 & -1 \\ \hline -1 & 1 & -1 \\ \hline \end{array}$		
(b)	Discuss the sigmoid function as an activation function for artificial neural network.	(2)	
Q – 6 (a)	What is back propagation in artificial neural network? Explain the entire process of back propagation algorithm.	(6)	
(b)	Write and prove Fuzzy Demorgan's law.	(4)	