Student Exam No:

GANPAT UNIVERSITY M. TECH SEM. II COMPUTER ENGINEERING REGULAR EXAMINATION MAY/JUNE: 2012 3CE201: Digital Image Processing

Time: 3 Hours]

[Total Marks: 70

Instructions: 1. Figures to the right indicate full marks of the question. 2. All questions are compulsory.

3. Each section should be written in a separate answer book

SECTION: I

- Q:1 (a) Discuss Sampling and quantization process for creating digital [4] image in brief.
 - (b) A ccd camera chip of 7 x 7 mm, and having 2048 x 2048 elements [4] focused on a square, flat area, located 0.5 m away. How many line pairs per mm will this camera be able to resolve? The camera is equipped with 35 mm lens.
 - (c) Explain why the discrete histogram equalization technique does not [4] yield a flat histogram.
- Q:1 (a) Propose the method for updating the local histogram for use in [4] local enhancement technique.
 - (b) Define histogram and explain dark, bright, low contrast, high [4] contrast image in respect of their histograms.
 - (c) Explain applications of images in ultraviolet, X-ray and Infrared [4] band.
- Q:2 (a) Discuss various gradient operators and its usage [4]
 (b) Show that the Laplacian of a continuous function f(t, z) of variables [4]
 t and z satisfies the following Fourier transform pair

$$\nabla^2 f(t,z) \Leftrightarrow -4\pi^2(\mu^2 + \nu^2)F(\mu,\nu)$$

(c) Discuss average filters.

Q:2

OR

[3]

- (a) Can you think of way to use the Fourier transform to compute the [6] magnitude of the gradient for use in image differentiation? Justify your answer.
 - Elaborate the relationship between filtering in spatial and [5] frequency domain.
 - Consider a 3x3 spatial mask that averages the four closest [6] neighbors of a point (x, y), but excludes itself from the average.
 - (i) find the equivalent filter, H(u, v) in the frequency domain(ii) Show that your result is low pass filter

Perform histogram equalization on following 8x8 image (b) [6] distribution. Also comment on your answer.

Gray Level	0	1	2	3	4	5	6	7	
No of pixels	8	8	8	8	8	8	8	8	

SECTION: II

Q:4	(a)	Prove the following
Q:4	(a)	Prove the following

- $A \circ B$ is a subset of A (i)
- If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$ (ii)

[6]

[6]

- (iii) $(A \circ B) \circ B = A \circ B$
- (b) Briefly explain H.261 compression standard

N		
8	HC.	
۲.	M N.	

		OR				
Q:4	(a)) Discuss what would you expect the result in each case.				
		(i) The starting point of hole filling algorithm is a point on	[']			
		the boundary of an object.				
		(11) The starting point in the hole filling algorithm is outside the boundary.				
	(b)	Prove that opening and closing are dual of each other.	[2]			
	(c)	Write brief short note on Digital water marking	[6]			
Q:5	(a)	Explain what would happen in binary erosion and dilation if the structuring element is a single point valued 1. Instif	[4]			
	(b)	Give a set of 3x3 masks that can be used to detect 1 Direct have 1	F 47			
		in horizontal, vertical, at 45° and at -45° Assume that intensities	[4]			
		of the lines and background are 1 and -1				
	(c)	Briefly explain Region growing algorithm.	[3]			
			[2]			
~ -		OR				
Q:5	(a)	Discuss watershed segmentation algorithm.	[5]			
	(b)	Explain canny edge detection algorithm in detail.	[6]			
0.6	(a)					
Q.0	(a)	Discuss optimum global thresholding for multiple thresholds.	[6]			
	(0)	advantages.	[6]			
		and the second second the second interaction and the second s				
		End of Paper				
	10000					