Student Exam No: _

GANPAT UNIVERSITY M. TECH SEM. II COMPUTER ENGINEERING/ INFORMATION TECHNOLOGY REGULAR EXAMINATION MAY/JUNE: 2013 3CE201/3IT201: Digital Image Processing

Time: 3 Hours]

[Total Marks: 70

Instructions: 1. Figures to the right indicate full marks of the question.

2. All questions are compulsory.

and (x', y') are

3. Each section should be written in a separate answer book.

SECTION: I

Q:1 (a) Obtain laplacian mask for image sharpening. And Discuss Unsharp [6] masking and high boost filtering.
(b) Show that laplacian is isotropic. You will need the following coordinates for axis rotation by an angleθ. Where (x, y) are unrotated [6]

rotated coordinates.
$$x = x' \cos\theta - y' \sin\theta$$

$$y = x' \sin\theta + y' \cos\theta$$

OR

Q:1	(a) (b)	Describe histogram equalization process. Develop a procedure for computing the median of an n x n	[6] [3]
	(c)	neighborhood Discuss Bit plane slicing briefly.	[3]
Q:2	(a)	Prove the following.	[4]
	(b)	$f(t) * h(t) \Leftrightarrow H(\mu)F(\mu)$ Prove the following translation property $f(x, y)e^{j2\pi(u_0x/M + v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$	[3]
	(c)	Describe the basic steps for filtering in frequency domain.	[4]
Q:2	(a)	OR Elaborate the process of obtaining Fourier transform of sampled	[6]
	(b)	functions. Describe the laplacian in the frequency domain	[5]
Q:3	(a)	Discuss various first order derivative operator for image sharpening in	[6]
	(b)	 spatial domain Explain following keywords (i) Spatial Resolution & Intensity Resolution (ii) Convolution & 	[6]

SECTION: II

Q:4	(a)	Explain extraction of connected components algorithm and its application.	[6]
	(b)	Show that following two definitions of dilation are equivalent. $A \oplus B = \{w \in Z^2 w = a + b, for some a \in A and b \in B\}$	[3]
		$A \oplus B = \{z (\hat{B})_z \cap A \neq \phi\}$	•
	(c)	Explain what would happen in binary erosion and dilation if the structuring element is a single point, valued 1. Give the reasons for your answer.	[3]
		OR	
Q:4	(a)	Describe Convex Hull and thinning morphological operation and its	[6]
	(b)	Prove the following. $(A \cdot B) \cdot B = A \cdot B$	[3]
	(c) .	Derive the Laplacian of Gaussian(LoG) operator. show its mask and usage.	[3]
Q:5	(a) (b)	Discuss canny edge detection procedure in detail and show its use. Explain signatures and skeletons as boundary descriptors.	[6] [5]
Q:5	(a)	Prove that average value of laplacian of Gaussian (LoG) operator is zero. And also show that the average value of any image convolved with this operator also is zero	[6]
	(b)	Explain basic global thresholding technique.	[5]
Q:6	(a) (b)	Discuss Ostu's method for global thresholding in detail. In reference of Hough transformation. Develop a procedure for obtaining the normal representation of a line from its slope-intercept form, $y=a.x + b$. Also find the normal representation of the line $y = -2.x + 1$.	[6] [6]

-----End of Paper-----

Discuss withing first order a