Student Exam No: _____

GANPAT UNIVERSITY

M. TECH. SEMESTER – II (COMPUTER ENGINEERING) REGULAR EXAMINATION APRIL-JUNE – 2017 3CE201: DIGITAL IMAGE PROCESSING

Time: 3 h	ours								Т	otal Marks	: 60	
Instructio		are to the r	ight indic	eparate ans cates full m /herever ne	narks.							
				SEC	TION	- I						
Q – 1 (a)	Explain the following terms with example: I. M-adjacency II. Digital path III. Connected component										[3]	
(b)	Differentiate between point processing and mask processing. Explain any one point [a processing transformation.											
(c)	Discuss the basic steps for applying filters in frequency domain. OR											
Q – 1 (a)	Explain the following terms:[2]I. Contrast stretchingII. False contouring											
(b)	Discuss about image sampling and quantization. [4]											
(c)	Show that the Fourier transform of the convolution of two functions in the spatial domain [4 is equal to the product in the frequency domain of the Fourier transforms of those two functions.											
Q - 2 (a)	Apply 3x3	median f	ilter on th	e image sł	nown in	fig. (/	A) on p	age 2.			[5]	
(b)	Consider t	he histogr	am value	1-	T	the 60	0 x 45,	T			[5]	
	r _k	0 203	1 256	524	3 229		4 545	5 312	<u>6</u> 499	7 132		
				1					499	132		
	For the ab	ove image	, achieve	1	1	am spo		tion.	6	7		
	$\frac{z_q}{p_z(z_q)}$	0		$\begin{vmatrix} 2\\ 0 \end{vmatrix}$	3		$\frac{4}{0.16}$	0.33	0.27	0.24		
	[[[[[[[[[[[[[[[[[[[[<u> </u>					0.1.0		0.27	0.21		
Q - 2 (a)	OR Apply -4 centered laplacian mask on the image shown in fig. (B). [4										[4]	
(b)	Find out values of Average Intensity and Intensity Variance using histogram statistics for [4 the 4x4 image shown in fig. (C) on page 2.										[4]	
(c)	Differentiate between convolution and correlation. When both will give same result? [2]									[2]		
Q - 3 (a)	Identify all necessary steps to implement a face recognition system based on image [3 processing. Also classify those steps as low, mid or high level process.										[3]	
(b)	Discuss the following grey-level transformations: [4] I. Log transformation II. Power-law transformation										[4]	
(c)	Let P and Q be the pixels at coordinates (15, 25) and (25, 40) respectively. Find out which [3 distance measure gives the minimum distance between the pixels.									[3]		

SECTION – II

Q - 4 (a)	Extract the connected components from the image given in fig. (D) using morphological operation. 'S' indicates the starting point for the procedure.						
(c)	 Explain the probability density functions for following types of noise: I. Gaussian noise II. Impulse noise 	[4]					
	OR						
Q - 4 (a)	Derive the skeleton for the image shown in figure (E) on page 2. Show each step of the process.						
(b)	Discuss the image degradation / restoration process model.						
Q - 5(a)	Explain the Otsu's method for thresholding in detail.						
(b)	What is Hough transform? Discuss the entire process of Hough transform.	[5]					
(~)	OR	[5]					
Q – 5 (a)	What do you mean by multiple thresholding? Discuss the basic global thresholding algorithm.						
(b)	Explain the entire process of canny's edge detection.						
Q - 6 (a)	What is pruning? How it can be implemented using morphological image processing?	[3]					
(b)	Derive the Laplacian-of-Gaussian filter.						
(c)	Discuss chain codes for boundary representation.	[3] [4]					
	그는 것을 알려 가지 않는 것을 해야 할아니는 것이라. 물건이 많은 것이 없는 것이 없다. 그는 것이 많은 것이 같아요.	["]					

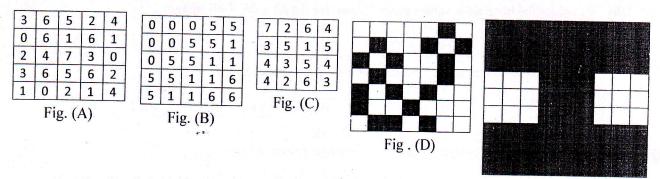


Fig . (E)

