Seat No.

GANPAT UNIVERSITY

M. Tech Sem. III Computer Engineering/Information Technology Regular Examination Nov-Dec 2015 3CE301/3IT301: Data Compression

Max Time: 3 Hours]

[Max Marks: 60

[6]

[2]

[7]

Instructions: 1. Figures to the right indicate full marks of the question.

- 2. All questions are compulsory.
- 3. Each section should be written in a separate answer book.

SECTION: I

- Q:1 (a) Apply arithmetic coding to encode a sequence **1 3 3 2** and Generate a [6] tag.
 - (b) Define the Prefix code and uniquely decodable codes with an [4] example

OR

- Q:1 (a) You are required to encode a message [d e c o d e], where alphabet [8] consists of 26 letters. Apply the adaptive Huffman procedure.
 - (b) Briefly discuss the advantages of arithmetic coding over Huffman [2] codes.
- Q:2 (a) Prove that for the iid source,

 $H(S^n) = nH(s)$

(b) Consider the source $S = \{a_1, a_2, a_3, a_4\}$ with the following probability [4] distribution.

 $p(a_1) = 0.3$, $p(a_2) = 0.3$, $p(a_3) = 0.25$ and $p(a_4) = 0.15$. Calculate the entropy of the source. Also say what could be the maximum entropy of the source S under what kinds of probability distribution?

OR

- Q:2 (a) Suppose that set of alphabets is $\{a,b,c\}$ and probability distribution is [8] p(a) =0.5, p(b) = 0.4 and p(c) =0.1. Let's assume that both the encoder and decoder know the length of the message is always 3. Answer the following question.
 - 1) How many bits are needed to encode a message bbb by Huffman coding and arithmetic coding?
 - (b) Compare LZ77 and LZ78.
- Q:3

(a)

()

A sequence is encoded using the LZW algorithm and the initial dictionary is shown in table below

Index	Entry
1	A
2	В
3	Н
4	Ι
5	S
6	Т

Output of the LZW encoder is the following sequence. 6 3 4 5 2 3 1 6 2 9 11 16 12 14 4 20 10 8 23 13, Decode this sequence.

(b)	Define the following terms
	(i) Conditional Entropy (ii) Differential Entropy

SECTION: II

[3]

Q:4	(a)	Briefly explain GIF and PNG graphics format	[6]
	(b)	Discuss the property of Discrete Cosine transformation	[4]
Q:4	(a)	Obtain the Discrete Cosine transformation of the following matrix using $V = AUA^{T}$ $a = \begin{bmatrix} 2 & 2 \\ 2 & -5 \end{bmatrix}$	[7]
	(b)	Briefly Explain Motion compensation H 263.	[3]
Q:5	(a)	Discuss the Encoder and Decoder for Hierarchical mode of JPEG	[5]
	(b)	Prove that $R(D) = \frac{1}{2} \log \frac{\sigma^2}{D}$ for $\sigma^2 < D$ for the Gaussian Source	[5]
Q:5	(a)	Explain H 261 Encoder in detail.	[6]
	(b)	Explain the purpose of using DCT and zigzag ordering in JPEG	[4]
Q:6	(a)	Explain logarithmic search for extracting Motion vectors	[6]
	(b)	Briefly Explain Lloyd-Max Quantizer.	[4]

-----END OF PAPER-----

Page 2 of 2