GANPAT UNIVERSITY

M. Tech. Semester -I (EC) Regular Examination, JAN 2013

Advanced Digital Communication (3EC 103) [Max. Marks: 70

Max. Time: **3** Hrs.] Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the **right** indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION –I

1	A	What is mean by orthogonal and orthonormal signal? Explain noncoherent detection for ESK using Quadrature receiver and envelope detectors.	8
	B	What is the theoretical minimum system bandwidth needed for a 15 Mbits/s signal using 16-level PAM without ISI?	3
2	A	Consider a coherent orthogonal MFSK system with M=8 having the equally- likely waveforms Si(t) =Acos 2π fit,, i=1,M,0 \leq T \leq T,where T=0.2ms.the received carrier amplitude, A is 1mv, and the two sided AWGN spectral density, No/2, is 10 ⁻¹¹ W/Hz. Calculate the probability of bit error. Ph	6
	B	Derive the equation for $P_{\rm b}$ for antipodal signal.	4
	C	Differentiate the amplifier and repeater.	2
		OR	
2	A	Differentiate the the matched filter and correlation receiver.	3
-	B	Assume that the equally- likely RZ binary pulses are coherently detected over a Gaussian channel with No=10 ⁻⁸ W/Hz. Assume that this synchronization is perfect and that the received pulses have an amplitude of 100 mv. If the bit error probability specification is $P_{h}=10^{-3}$. Find the largest rate that can be transmitted using this system.	6
	С	Consider a 16-ary PSK system with symbol error probability $P_e = 10^{-5}$ A gray code is used for the symbol to bit assignment. What is the approximate bit error probability?	3
3	A	Explain the generation and detection of BPSK using block diagram.	6
	B	What is role of matched filter in digital communication system? Also derive the	6
		equation for impulse response for it.	
		OR	
3	A	Explain the block diagram of a typical digital communication system.	6
	В	Derive the minimum bit energy, E_b to noise spectral density, N ₀ /2, to achieve a BER equal to 10 ⁻⁵ . For BPSK and Polar baseband signal.	6

lg 1/2

SECTION-II

				Υ.,
4	A	Explain the frequency and phase synchronization sing PLL.	6	
	В	Explain the QPSK receiver using necessary waveforms and block diagram	6	
5	A	Explain the receiver for detection of DPSK signal.	4	
	B	Explain the traditional ciphers in detail.	3	
	С	Explain the different types of open loop bit synchronizers.	5	
		OR		
5	A	Define the Cipher and public key	2	
	B	What is basic goal for the communication system designer? Also explain the	5	
	~	bandwidth-efficiency plane using necessary chart.		
	С	Write short note on CDMA and TDMA.	5	
6	A	Explain the basic steps in the demodulation/detection of digital signals	5	
	B	Derive the equation for bit error for Non-coherently detected binary orthogonal	5	
		FSK.	0	
		OR		
6	A	Explain the Trellis Coded Modulation in detail.	7	
	B	Explain the reception of MSK using block diagram and necessary waveforms.	4	

Pq. 2/2

equation for impose response for it.