3EC101

GANPAT UNIVERSITY

M. Tech. Semester I (EC) Examination, November/December 2012 **Communication Mathematics**

Max. Time: 3 Hrs.]

[Max. Marks: 70

Instructions:

1

2

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the **right** indicate full marks.
- 4. Assume suitable data, if necessary.
- 5. Question numbers three and six are compulsory.

SECTION-I

- (A) A bag contains 5 balls and it is not known how many of them are white. Two balls are 4 1 drawn at random from the bag and they are noted to be white. What is the chance that all the balls in the bag are white?
 - Given $f_{xy}(x, y) = cx(x y), 0 < x < 2, -x < y < x$, and 0 elsewhere. (i)Evaluate c, 6 **(B)** (ii) find $f_x(x)$, (iii) $f_{y/x}(y|x)$ and (iv) $f_y(y)$.
 - For two independent events A and B, prove that two events \overline{A} and B are also independent. 2 (C)

OR

- An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 blackballs. 4 (A) Two balls are drawn at random from the first urn and placed in the second urn and then 1 ball is taken at random from the latter. What is the probability that it is a white ball? 6
 - (B) If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4),find the probability density function and cumulative distribution function.
 - (C) If random variable X is exponentially distributed with parameter $\lambda=1$, find the moment generating function of X. distribution defined as 5
- (A) If X and Y are independent random variables with identical 2 U(0, 1), show that the pdf of Z is the convolution of pdfs of X and Y, where Z=X+Y.
 - Write short note on Output statistics of Linear Systems. **(B)**

OR

- Given the uncorrelated random variables X1, X2 and X3, whose means are 2, 1 and 4 and 5 (A) whose variance are 9, 20 and 12, find (i) mean and variance of $X_1-2X_2+5X_3$, (ii) the covariance between X_1+5X_2 and $2X_2-X_3+5$.
 - Write short note on Stationary Random Process. **(B)**

6

2

6

3EC101

- (A) If X and Y are independent RVs with pfd's e^{-x} , $x \ge 0$ and e^{-y} , $y \ge 0$ respectively, find the density function of $U = \frac{X}{X+Y}$ and V = X + Y. Are U and V independent?
 - Show that the random process $X(t)=A \cos(\omega t + \theta)$, where θ is uniformly distributed 4 **(B)** random variable in the range of $(0, 2\pi)$ and A, ω and t are constants, is weakly stationary random process.
 - State and prove the Tchebychev's Inequality. **(C)**

. 3

4

4

5

(B)

SECTION II

2

6

6

5

4

7

For which rational value of a does the following system have (i) no solutions (ii) exactly **(A)** one solution (iii) infinitely many solutions?

> x + 2y - 3z= 4 3x - y + 5z= 2

$$4x + y + (a^2 - 14)z = a + 2$$

Determine explicitly the inverse of the following 3×3 elementary row matrices: 6 **(B)** (i) $E_{12}E_{23}$ (ii) $E_{12}(3)E_{21}(-3)$

OR

- Solve the following systems of linear equations by reducing the augmented matrix to (A) reduced row-echelon form:
 - 3x y + 7z = 0(ii) 2x y + 4z = 1/2x y + z = 1x + y + z $\begin{array}{c} \text{(i)} 2x + 3y - z \\ x - y - z \end{array}$ = -8 6x - 4y + 10z

Let $A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \end{bmatrix}$. Prove that A is non-singular, find A⁻¹ and express A as a product of **(B)** elementary row matrices.

- If $A = \begin{bmatrix} 4 & -3 \\ 1 & 0 \end{bmatrix}$, use the fact that $A^2 = 4A 3I_2$ and mathematical induction to prove that 6 5 (A) $A^n = \frac{\binom{1}{3^n - 1}}{2}$ $\frac{1}{2}A + \frac{(3-3^n)}{2}I_2$ if $n \ge 2$.
 - Find the basis for the row space and column space of the matrix **(B)**

	[1	3	-5	1	5	
<i>A</i> =	1	4	-7	3	-2	
	1	5	-9	5	-9	•
	0	3	-6	2	-1]	
			OR			

Explain how to use the LU factors of a nonsingular matrix $A_{n \times n}$ to compute A^{-1} (A) efficiently.

Find the eigenvalues and eigen vectors of the matrix

$$A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}.$$

Page 2 of 3

5

(A) Find the least square solution of equation AX=Y, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}, \quad Y = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

Let $A = \begin{bmatrix} 1 & 4 & 5 \\ 4 & 18 & 26 \end{bmatrix}$, determined by the set of the set of

6

(B)

 $=\begin{bmatrix} 1 & 4 & 5 \\ 4 & 18 & 26 \\ 3 & 16 & 30 \end{bmatrix}$, determine the lower triangular matrix L of A.

END OF PAPER