marnin

GANPAT UNIVERSITY

M. Tech. Semester I (EC) Regular Examination, December 2013 **3 EC 101: Communication Mathematics**

Max. Time: 3 Hrs.]

[Max. Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the **right** indicate full marks.
- 4. Assume suitable data, if necessary.
- 5. Question numbers three and six are compulsory.

		<u>SECTION-I</u>	
1	(A)	A and B alternatively throw a pair of dice. A wins if he throws 4 before B throws 5 and B wins if he throws 5 before A throws 4. If A begins, find the probability of A winning.	4
	(B)	The joint pdf of the RV (X, Y) is given by $f(x, y) = kxye^{-(x^2+y^2)}$, $x > 0$, $y > 0$. Find the value of k and prove also that X and Y are independent.	6
	(C)	If A and B are independent events, prove that $P(A \cup B) = 1 - P(\overline{A})P(\overline{B})$.	2
		OR	
1	(A)	An urn contains 5 white balls, 3 red balls and 4 black balls. Two are drawn from the urn at random. Find the probability that (i) both of them are of same colour and (ii) they are of different colours.	4
	(B)	The joint probability density function of (X, Y) is given by $p(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3.$	6
		Find all the value of k and all the marginal probabilities	
	(C)	State and prove the Tchebychev's Inequality.	2
2	(A)	If X and Y are independent RVs with identical uniform distributions in $(0, 1)$, find the joint pdf of (U, V) , where $U = X+Y$ and $V=X-Y$.	4
	(B)	Describe the statistical response of linear systems to the random input	4
	(C)	Suppose that the random variable X satisfies $E[X]=0$, $E[X^2]=1$, $E[X^3]=0$ and $E[X^4]=3$ and let $Y = a + bX + cX^2$. Find the correlation coefficient $\rho(X, Y)$.	3
2		OR	
2	(A)	If the joint pdf of (X, Y) is given by $f(x, y) = x + y; 0 \le x, y \le 1$, find the pdf of $U = XY$.	4
	(B)	Write short note on White Noise Random Process.	-
	(C)	Find the variance of a Gaussian random variable.	5 2
3	(A)	If X and Y are independent RVs with pfd's e^{-x} , $x \ge 0$ and e^{-y} , $y \ge 0$ respectively, find the density function of $U = \frac{x}{x+y}$ and $V = X + Y$. Are U and V independent?	8
	(D)	In random variable X is exponentially distributed with parameter $\lambda = 1$ find at	4

Seat No.

SECTION-II

4 (A) For the following system find in which case system has consistent solution? Also find the 8 solution.

$$2x - y + 3z = a$$

$$3x + y - 5z = b$$

$$-5x - 5y + 21z = c$$

(B) Determine explicitly the inverse of the following 3×3 elementary row matrices: $E_{12}E_{21}(-3)$

OR

(A) Using LU factorization solve the following system.

4

x + y + z = 2 2x + 3y - z = 8x - y - z = -8 4

8

5

6

5

8

4

- (B) Let $A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$. Prove that A is non-singular, find A⁻¹
- 5 (A) If $A = \begin{bmatrix} 7 & 4 \\ -9 & -5 \end{bmatrix}$. Prove that $A^n = \begin{bmatrix} 1+6n & 4n \\ -9n & 1-6n \end{bmatrix}$ if $n \ge 1$.
 - (B) Determine the basis for the nullspace of the following matrix.

$$A = \begin{bmatrix} -1 & 2 & -1 & 5 & 6\\ 4 & -4 & -4 & -12 & -8\\ 2 & 0 & -6 & -2 & 4\\ -3 & 1 & 7 & -2 & 12 \end{bmatrix}.$$

- 5 (A) Let $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, use the fact that $A^3 = 3A^2 - 3A + I_3$ to express A^4 in terms of A^2 , A and I_3 and hence calculate A^4 .
 - (B) Find the eigenvalues and eigen vectors of the matrix

	[4	2	-21	
4 =	$\begin{bmatrix} 4\\ -5\\ -2 \end{bmatrix}$	2 3	2 .	
	$\lfloor -2 \rfloor$	4	$\begin{bmatrix} -2\\2\\1 \end{bmatrix}$.	

6 (A) Find the least square solution of the equation AX=Y, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}, \quad Y = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

(B) Briefly explain Singular Value Decomposition.

END OF PAPER