Student Exam No._

GANPAT UNIVERSITY

M. Tech. Semester II: Electronics & Communication Engineering

Regular Examination June 2013

3EC202 Linear and Nonlinear Optimization

Time: 3 Hours Instruction:

Total Marks: 70

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

Que1	(A)	Explain five major phases for development of an optimization model.	5. 2
	(B) (C)	Define Composite constraint surface. The horse power generated by a Pelton wheel is proportional to $u (v-u)$ where u is the velocity of the wheel, which is variable and v is the velocity of the jet which is fixed. Show that the efficiency of the Pelton wheel will be maximum at $u = v/2$. OR	5
Que1	(A)	List out steps used to formulate and solve optimization problems and state six engineering applications of optimization problem.	7
	(B)	Analyze the function $f(x) = 12x^5 - 45x^4 + 40x^3 + 5$ and classify the stationary points as maxima, minima and points of inflection.	5
Que2	(A)	State necessary and sufficient condition and prove sufficient condition for unconstrained optimization.	6
	(B)	Minimize $f(X) = x1^2 + x2^2 + 60x1$ subject to the constraints g1=x1-80 ≥ 0 g2=x1+x2-120 ≥ 0	5
		Using Kuhn-Tucker conditions.	
		OR Complete the series of the equality	6
Que2	(A)	Discussed the optimization of functions of multiple variables subjected to equality constraints using the method of Constrained variation and the method of Lagrange multipliers.	Ū
	(B)	Analyze the function	5
	()	$f(X) = -x1^2 - x2^2 - x3^2 + 2x1x2 + 2x1x3 + 4x1 - 5x3 + 2$ and classify the stationary points as maxima, minima and points of inflection.	
Que3	(A)	Write short note on following:	8
Que5		1. Classification based on the nature of equations involved	
	-	2. Enlist and explain different classical optimization techniques	
	(B)	State whether each of the following functions is convex, concave or neither.	4
		1. $f(x) = e^{-x}, x > 0$	
		2. $f(x) = \sqrt{x}, \ x > 0$	

SECTION-II

Que4	(A) (B)	Explain the different case of solution of LPP for visual representation. Find all the basic solutions corresponding to the system of equations 3X+2Y+Z=10	6
Que4	(A) (B)	X-2Y+3Z=6 2X+Y-Z=1. Explain the duality of linear programming (LP) problem and explain the relationship between the primal and dual with example. Maximize $f(X1,X2)=X1+2X2$ Subject to constraints $-X1+2X2 \le 1$	6
Que5	(A) (B)	$\begin{array}{l} X2 \leq 1 \\ X1, X2 \geq 0, \end{array}$ Using simplex algorithm. Write a short note on CAUCHY method for optimization. Minimize $f(x1, x2, x3) = 2x1^2 + x2^2 - x3^2 + 2x1x2 + x1 - x2$ by Newton's method. Starting point from $X1 = \begin{cases} 0 \\ 0 \end{cases}$.	5 6
Que5	(A) (B)	Write a short note on NEWTON'S method for optimization. Solve the following LPP using graphical method Minimize $f(x,y)=6x+5y$ Subject to $2x-3y \le 5$ $x+3y \le 11$ $4x+y \le 15$ $x, y \ge 0$.	56,
Que6	(A) (B) (C)	Define sensitivity analysis and list out five basic types of parameter enanges that affect the optimal solution.	6 3 3