Student Exam No:	
-------------------------	--

GANPAT UNIVERSITY M.TECH SEM. II ELECTRONICS & COMMUNICATION ENGINEERING CBCS REGULAR EXAMINATION, May/June-2013

3EC205 [Elective (RF Circuits)]

TIME: 3 Hrs.]

TOTAL MARKS: 70

INSTRUCTIONS:

1. Attempt all questions.

2. Answers to the two sections must be written in separate answer books.

3. Figures to the **right** indicate **full** marks.

4. Assume suitable data, if necessary.

SECTION-I

		SECTION-1	
		aini mais una sategularani ili Tulli	
Que-1	A	The Y factor method is used to measure the nose figure of an amplifier with a noise source having ENR= 20 dB and cold load at temperature of 77° K. If the Y factor ratio is measured to be 16.285 then calculate the noise figure of the same amplifier.	6
	В	Discuss about design for maximum gain of a single stage amplifier. OR	6
· Que-1	A	An amplifier with a bandwidth of 1GHzhas a gain of 15 dB and a noise temperature of 250K. If the 1dB compression point occurs for an input power level of -10 dB then what will be linear dynamic and spurious free dynamic range values for it.	6
	В	Derive necessary equations for two port power gains of a two port network with general source and load impedance.	6
Que-2	A	Prove with required equations that if X_1 and X_2 are inductors and X_3 are capacitor in common Emitter BJT then resulting circuit will be Hartley oscillator. Also write equations of frequency of oscillation for Colpitts and Hartley oscillator.	6
	В	Derive necessary equations of Γ_{in} and Γ_{out} for transistor based oscillator circuits . OR	5
Que-2	A	What is the importance of phase noise in oscillator circuits? Derive Manley – Rowe relation equations of non linear reactive element for its power conservation associated with frequency conversion.	6
	В	Discuss about Balanced amplifier with all necessary equations.	5
Que-3	A	Explain about Ferrite based resonance isolators.	4
Que-3	B	Discuss in detail about non reciprocal latching phase shifter devices.	4
	C	A receiver has a noise figure of 7 dB, a 1dB compression point of 25dBm, a gain of 40dBand a third order intercept point of 35dBm. If the receiver is fed with an antenna	4
		having a noise temperature of $T_A=150^\circ$ K and desired output SNR is 10 dB then calculate linear and spurious free dynamic range values of the same. Assume a receiver bandwidth of 100MHz.	

SECTION-II

Que-4	A	Derive the equation of voltage gain of a signal component at frequency W ₀ .Also comment on 1dB compression point of a non linear amplifier.	6
	В	Derive necessary equation of noise figure of a passive two port network.	6
		OR	
Que-4	A	What do you mean by third order inter modulation effect? Define linear dynamic and spurious free dynamic range with suitable equations.	6
	В	Derive the generalized equations of noise figure and noise temperature for N stage cascaded system.	6
Que-5	A	Explain Y factor method for measuring the equivalent noise temperature of amplifier.	6
	В	Draw the schematic symbol of gyrator .Discuss about working of non reciprocal Faraday rotation phase shifters. OR	5
Que-5	A	Derive in general the maximum range equation of a RADAR system.	6
	В	Discuss about ferrite circulators and comment on properties of a mismatched circulator with help of suitable S matrix.	5
Que-6	A	Briefly discuss Passive inter modulation and Dielectric Resonator Oscillator	4
aim bom Wila Hawasa Seekasa KA Gobil	B	Discuss about both tests for unconditional stability.	4
	C	The S parameters for HP HFET-102 GaAs FET at 2GHz with a bias voltage V_{gs} =0 are S11=0.894 \sqsubseteq -60.6,S12=0.020, \sqsubseteq 62.4,S21=3.122 \sqsubseteq 123.6 and S22=0.781 \sqsubseteq - 27.6.Z0=50 Ω . Find the stability of this transistor with K- Δ and μ test values. Also find values for centers and radii of the stability circles.	4

END OF PAPER