M. Tech. . morning D. 28/05/2014

GANPAT UNIVERSITY

M. TECH. SEMESTER II ELECTRONICS & COMMUNICATION ENGINEERING REGULAR EXAMINATION, MAY-JUNE 2014

3EC202 LINEAR AND NONLINEAR OPTIMIZATION

TOTAL Marks: 70 Time: 3 HOURS.

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks. Assume suitable data, if necessary.

SECTION-I

- Explain Art of Modeling and Model Building in Development of an optimization QUE.1 (A) model.
 - Briefly describe the Engineering application of Optimization. (B)

- Find the extreme Points of function $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$ QUE.1 (A)
 - Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet (B) metal to maximize its volume such that the total surface area is equal to $A_0 = 24\pi$.
- What are the representation of genetic algorithms and explain them. QUE.2 (A)
 - What is optimization? Define Basic component of optimization. (B)

- Write and explain different type of Classification based on the nature of the equations QUE.2 (A) involved.
 - $f(X) = x_1^2 + x_2^2 + 60x_1$ Minimize (B) subject to the constraints $g_1 = x_1 - 80 \ge 0$ $g_2 = x_1 + x_2 - 120 \ge 0$ Using Kuhn-Tucker conditions.
- State and Prove the necessary conditions and sufficient conditions for function of a QUE.3 single variable.
 - Find the stationary points of $f(X) = 2x_1^3 2x_1x_2 5x_1 + 2x_2^2 + 4x_2 + 5$ and (B) classify them as relative maxima, relative minima or neither.

allymous in

SECTION-II

QUE.4	(A)	Explain the Dual Simplex Method with its algorithm.	5
	(B)	Solve the following LPP using simplex method	7
	(-)	Minimize $Z = 4x_1 - x_2 + 2x_3$	
		subject to the constraints $2x_1+x_2+2x_3 \le 6$	
		$x_1-4x_2+2x_3 \le 0$	
		$5x_1-2x_2-2x_3 \le 4$	
		$x_1, x_2, x_3 \ge 0$	
		OR	
QUE.4	(A)	Solve the following LP Problem graphically.	7
	()	Maximize $z = 6x + 5y$	4
		Subject to constraint $2x - 3y \le 5$	
		$x + 3y \le 11$	
		$4x + y \le 15$	
		$x,y \ge 0$	
	(B)	Explain the Motivation of the simplex method.	0
QUE.5	(A)	Find all the basic solution corresponding to the system of the equation	6
		$2x_1+3x_2-2x_3-7x_4=1$	
		$x_1 + x_2 + x_3 + 3x_4 = 6$	
		$x_1 - x_2 + x_3 + 5x_4 = 4$	
QUE.5	(B)	Explain the Steepest descent method and its Convergence Criteria.	5
		OR	
QUE.5	(A)	Write the Procedure of revised simplex method to solve a general linear	7
	()	Programming problem.	
	(B)	Explain Newton's method and its working procedure, advantages and disadvantages.	4
QUE.6	(A)	Write down the characteristics of standard form of LPP and the Procedure to	6
202.0	()	transform a general form of a LPP to its standard form.	
	(B)	Solve the following LPP Using two Phase method	6
	()	Minimize $Z = 2x_1 + 3x_2 - x_{4+} x_5$	(2)
		subject to the $3x_1 - 3x_2 + 4x_3 + 2x_4 - x_5 = 0$	
		$x_1 + x_2 + x_3 + 3x_4 + x_5 = 2$	
		$x_i \ge 0$, i = 1 to 5	

END OF PAPER