Student Exam No

GANPAT UNIVERSITY

M.Tech Semester -II (EC) Regular Examination, April-June 2016

(3EC 205 -[1]) RF Circuits and Systems

Max. Time: 3 Hrs.] Instructions:

[Max. Marks: 60

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the **right** indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

Q-1 (A) A silicon bipolar junction transistor has the following scattering parameters at GHz, 5 with a 50 Ω reference impedance:

 $S_{11} = 0.38 \bot -158^\circ$, $S_{12} = 0.11 \bot 54^\circ$,

 $S_{21} = 3.50 \perp 80^{\circ}$.

 $S_{22} = 0.40 \bot -43^{\circ}$

The source impedance is $Z_s = 25 \Omega$ and the load impedance is $Z_L = 40 \Omega$. Compute the power gain, the available power gain, and the transducer power gain.

(B) What do you mean by Unconditional stability concept in amplifier design? Derive the 5 equation for the output stability circle for microwave amplifier design.

OR

- Q-1 (A) What do you mean by conditional stability concept in amplifier design? Derive required 5 equations for the input stability circle for microwave amplifier design.
 - (B) What is Nyquist or Barkhausen criterion for oscillator functioning? Derive basic 5 equations for design of Colpitt oscillator based on CE configuration using general analysis method for it.

Q-2	(A) (B)	Discuss in detail about Double balanced mixers. Write short note on Dielectric resonator oscillators.	5
Q-2	(A) (B)	OR Explain about working of single ended mixers with suitable diagrams. What is importance of phase noise in oscillator design? Discuss about it in detail.	5 5
Q-3	(B)	Write short notes on Microwave sensors. Draw basic block diagram of ROF based system and explain functionality of its each block.	3 3
	((1))	XXZ · 1	

(C) Write short note on Microwave Radiometer.

4

SECTION - II

Q-4	(A)	With help of Planck's blackbody radiation law derive equation for power of thermal noise. What you will say about ultraviolet catastrophe condition with reference to it?	5
	(B)	Derive equation for Noise Figure and effective noise temperature of a three stage cascaded system.	5
		OR	
Q-4	(A) (B)	Discuss in detail about Measurement of Noise Temperature (Y factor) method. Briefly discuss about tests for unconditional stability for amplifier design procedure.	5 5
Q-5	(A)	output), a gain of 40 dB, and a third-order intercept point of 35 dBm (referenced to output). If the receiver is fed with an antenna having a noise temperature of $T_A = 150^{\circ}$ K, and the desired output SNR is 10 dB, find values of linear and spurious free dynamic ranges and give your comment form those values. Assume a receiver bandwidth of 100	5
		MHz.	5
•	(B)	Write short note on Single-pole PIN diode switches.	5
		OR	5
Q-5	(A)	temperature is to be measured via the Y -factor method. The following data are obtained: For $T_1 = 290$ K, $N_1 = -62.0$ dBm.	5
		For $T_2 = 77$ K, $N_2 = -64.7$ dBm. Determine the equivalent noise temperature of the amplifier. If the amplifier is used with a source having an equivalent noise temperature of $T_s = 450^{\circ}$ K, what is the output noise power from the amplifier, in dBm?	
	(B)	With required equations describe about low noise amplifier design issue.	5
			2
Q-6	(A) (B) (C)	Explain concept of the Third-order intercept point for a nonlinear component working. Discuss briefly about Broadband high power and multistage Amplifiers. Derive required equation for Noise Figure of a Passive Two-Port Network.	3 3 4
	(-)		

END OF PAPER

Page 2 of 2