Student Exam No:-

Total Marks:-70

(6)

GANPAT UNIVERSITY M.TECH SEM-I ELECTRICAL ENGINEERING **REGULAR EXAMINATION JAN-2013 3EE101:-NUMERICAL TECHNIQUES**

Time: 3 Hours

table

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

SECTION-I

Q:1 (A) Using Newton's divided difference formula find f(x) as the polynomial in x for the (6)

Q:1

(A)

x:	0	1	2	4	5	6
y:	1	14	15	5	6	19

The following table gives the corresponding values for pressure p and specific volume v (6) **(B)** of a superheated steam

OR

<i>v</i> :	2	4	6	8	10	
P:	105	42.7	25.3	16.7	13	-

Find the rate of change of pressure with respect to volume when v=2.

Calculate $\int_0^{10} \frac{dx}{1+x^2}$ by using (i)Trapezoidal Rule (ii)Simpson's 1/3rd rule The result of measurement of electric resistance R of a copper wire at various **(B)** (6) temperatures is listed below: t: 19 25 30 36 40 45 50 R: 76 77 79 80 82 83 85 Using the method of least square, find the straight line R = a + bt that fits best in the data. Q:2 (A) Solve the simultaneous equations. (6) 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16, by using gauss elimination method. (B) Solve the equations (5) 5x - y + z = 10, 2x + 4y = 12, x + y + 5z = -1, by using Jacobi's method. OR (A) Apply Runge-Kutta method to find approximate value of y for x = 0.2, in steps of 0.1, if Q:2 (6) $\frac{dy}{dx} = x + y^2$ given that y = 1 for x = 0. (B) Using simple Euler's method, solve for y at x = 0.1, from (5) $\frac{dy}{dx} = x + y + xy$, y (0) = 1, taking step size h = 0.025. Q:3 Attempt any two: (12)Using Lagrange's formula, find log₁₀ 310 from the following data: (A) 300 x: 304 305 307 log 10 x: 2.4771 2.4829 2.4843 2.4871 The area of a circle diameter d is given for the following values: **(B)** d: 80 85 90 95 100 A: 5026 5674 6362 7088 7854

Calculate the area of a circle of diameter 105.

Derive the Newton's forward interpolation formula. **(C)**

SECTION-II

Q:4	(A) Solve $x^4 - 5x^3 + 20x^2 - 40x + 60 = 0$, given that all the roots of the equation are complex, by using Lin-Bairstow's method.	(6)
	(B)) Write and explain the two limitations of Newton-Raphson method.	(6)
Q:4	(A)) Establish whether the system of equations 10x + 8y + 9z + 6w = 33.	(3)
	(B)	6x + 7y + 5z + 5w = 23, 8x + 10y + 7z + 7z = 32, 9x + 7y + 10z + 5w = 31, Is well-conditioned or not. Explain why? An approximate solution of equations, x + 4y + z = 5 2x + 5y + 8z = 7 3x + 6y + 9.1z = 9.1, Is given by $x = 1.8$, $y = -1.2$, $z = 1$. Improve this solution by using the iterative method.	(7)*
	(C)	Define the following terms: (i) inherent errors (ii) Truncation errors.	(2)
Q:5	(A) (B)	Find all the roots of the equation $x^3 - 6x^2 + 10x - 6 = 0$, by Graeffe's method. Evaluate the real root of the equation $x - \cos x = 0$, by using bisection method. OR	(6) (5)
Q:5	(A)	Consider the equation $3x = \cos x + 1$. By using the Newton-Raphson method, find real root of the equation, correct to four decimal places.	(6)
	(B)	Explain the error propagation in various mathematical operations.	(5)
Q:6	(A)	Using the finite difference method, find y (0.25), y (0.5), y (0.75). Satisfying the differential equation $\frac{dy}{dx} + y = x$, subject to boundary condition y (0) = 0, y (1) = 2.	(6)
	(B)	Using the shooting method, solve the boundary value problem $y''(x) = y(x), y(0) = 0$, and $y(1) = 1.17$.	(6)
	Ċ	END OF PAPER Best of Luck	