Student Exam No:-

Total Marks:-70

GANPAT UNIVERSITY M.TECH SEM-I ELECTRICAL ENGINEERING **REGULAR EXAMINATION NOV DEC-2013 3EE101:- NUMERICAL TECHNIQUES**

Time: 3 Hours

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

SECTION-I

Q:1 (A) Find the value of t when A= 85 from the following table, using Langrange's method: (6) 2 5 T: 8 14 81.3 68.7 87.9 94.8 A: (6)

(B) Find the value of cos 1.74 using the table given below:

x:	1.70	1.74	1.78	1.82	1.86
sin x:	0.9916	0.9857	0.9781	0.9691	0.9584

Q:1	(A)	Using trapezoidal rule evaluate $\int_{3}^{\frac{\pi}{3}} \tan x dx$ by taking 8 intervals.								(6)	
	(B)	a) $\mu = \frac{2+\Delta}{2\sqrt{(1+\Delta)}}$	$=+\sqrt{(1+\frac{1}{4})^2}$	2	-						(6)
		b) $1 + \frac{\delta^2}{2} = \sqrt{(}$	$1 + \delta^2 \mu^2$)								
Q:2	(A)	Solve the equation ?	$x^4 - 2x^3 + 4x$	$x^{2} + 6x -$	-21 =	0, giv	en that	the sum of ty	wo roots	is zero.	(6)
	(B)	Define various types of errors. Give one practical example of source of each type.									
0.0	(1)	Paula's sector			I.	OR					10
Q:2	(A)	Explain newton-rap	nson method	i for hn	aing re	ear ro	of of eq	uation.	100		(6)
	(B)	Solve the equations $10x + x = 11.10$	by Jacobi's	iteration	n meth	od co	rrect to	three decima	il places,	strent all	(5)
		10x + y - z - 11.19	,								
		x + 10y + 2 = 28.08 -x + y + 10z = 35.6									
0.3		Attempt any two									(12)
Q.5	(A)	Answer the followin	ng with reaso	ons:							(12)
	()	(i) Droug that $S(\overline{F_2})$	$F\left(\frac{-1}{2}\right) = \Lambda$	c-1 .	٨						
		(i) Flowe that $O(L^2)$	$- L - 2) - \Delta I$		Δ	1				0	
		(11) 10 III y $-ab^{-}$ by (11) Wheneve Trene	reast square	e method	a,norm	iai eq	uations	are	. h	(
		(iii) wheneve Trape	2001a1 rule is	for nu	able, SI	impsc il inte	aration	rule can als	o be app	oned.	
		(w) if $v = r^2 - 2x + 2$	taking inter	val of d	lifforor	nina	as unitu	$\Lambda^2 \gamma -$		2	
		(vi) The fourth divid	ded difference	var or u		icing va v		, <i>ду –</i>	2	'	
	(\mathbf{R})	A thermocounle a	ives the fol	lowing	$0, \alpha$, α_2	t for	rice in	temperature	· · ·		
	(1)	Tomp(°C) 0			outpu	40	50		<i>.</i>		
		Output(mV) = 0	0 0 1 0	0 1	2	16	20				
		Find the output of	.0 0.4 0	.0 1	.2700	1.0	2.0		4		
-		difference formula	i mermocol	iple for	31-6	tem	perature	e using New	non's L	ivide	
	10		1.								
	(0)	Fit a curve of form	$1 y = ae^{bx}$ to	the tol	lowin	ig dat	a:	1010			
		X.	0		1		St. Lu	2		3	
		y:	1.05		2.10			3.85	18	3.30	

SECTION-II

Q:4	(A)	Apply Milne's method to find a solution of the differential equation $dy/dx = x - y^2$ in the range of $0 \le x \le 1$ for boundary condition $y = 0$ at $x = 0$.	(6)
	(B)	Solve $x4 - 5x3 + 20x2 - 40x + 60 = 0$, given that all the roots of $f(x) = 0$ are complex, by Lin-Bairstow method.	(6)
Q:4	(A)	Solve by Taylor's series method the equation $dy/dx = log(xy)$ for y(1.1) and y(1.2), given that $y(1) = 2$.	(6)
	(B)	Find the real root of equation $x e^x = \cos x$ using secant method correct to four decimal places	(6)
Q:5	(A)	Solve the equations by Relaxation method, 10x - 2y - 3z = 205, -2x + 10y - 2z = 154, -2x - y + 10z = 120	(6)
	(B)	Using modified Euler's method, find $y(0.2)$ and $y(0.4)$ given y' = y + ex, $y(0) = 0$. OR	(5)
Q:5	(A)	Apply Runge-Kutta fourth order method to find an approximate value of y when $x = 0.2$ given that $dy/dx = x + y$ and $y = 1$ when $x = 0$.	(6)
	(B)	Write a short note on Ill-conditioned equations.	(5)
Q:6		Attempt any two:	(12)

- (A) Find the real root of equation $x \log_{10} x = 1.2$ by regula-falsi method correct to four decimal places.
- (B) The velocity v (km/min) of a two-wheeler which starts from rest, is given at fixed intervals of time t (min) as follows:

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.

(C) Solve the following system of equations by Gauss-Jacobi's iteration method correct to three decimal places:

5x - y + z = 10, 2x + 4y = 12, x + y + 5z = -1. Start with (2,3,0).

END OF PAPER Best of Luck

Page 2 of 2