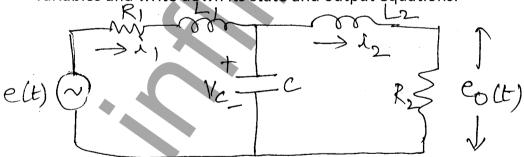
morning Octe: 03/01/2015

Exam No:

GANPAT UNIVERSITY


M.TECH SEM-I(Electrical Engg.), Regular Examination-Nov-Dec.2014

Subject Code-3EE103

Subject Name-Advanced Control Systems.

SECTION-I

- Q1) a Discuss in brief, the common types of non-linearities. (05)
- Q1) b Write a short note on Poincare-Bendixson theorem. (05)
- Q1) a Derive the describing function for dead zone non-linearity. (10)
- Q2) a Explain the principle of duality. (05)
- Q2) b Use parallel decomposition to represent the following system in (05) the state space form. $Y(s)/U(s) = \frac{8s^2 + 17s + 8}{((s+1)(s+3)(s+5))}$
- Q2) a Obtain the state space representation of a system given by $Y(s)/U(s) = \frac{10s^2 + 5s + 100}{(s^4 + 20s^3 + 45s^2 + 18s + 100)}$ (05)
- Q2) b For the electrical network shown, select i_1 , i_2 and v_c as the state (05) variables and write down its state and output equations.

- Q3)a According to Kalman, what is the necessary and sufficient (05) condition for a system to be state controllable?
- Q3)b Consider a system with the state equation (05)

 $\dot{\mathbf{x}}_1 = \mathbf{x}_2$

 $X_2 = X_3$

 $\ddot{x}_3 = -6x_1 - 11x_2 - 6x_3 + u$

Estimate the state controllability using Kalman's test.

SECTION-II

Explain the classification of singular points. (05)Q4) b Find out the singular points for the system given. (05)x +0.5x +x=0 OR Q4) a Discuss the method of constructing trajectories using the delta method. (05) Q4) b Write a short note on limit cycles. Q5) a Discuss uniform stability, asymptotic and exponential stability in (05) the state plane with trajectories Q5) b Explain LaSalle's theorem. (05)OR Q5) Explain the design of state feedback controller. (10)Q6) a Explain Lyapunov's stability theorem. (05)Determine the stability of a non-linear system given by the (05) Q6)b equation $x_1 = -x_1 + 2x_1^2x_2$

END OF PAPER