Date: 04/02/2010

Student Exam No:-

Total Marks:-60

GANPAT UNIVERSITY M.TECH SEM-I (ELECTRICAL ENGINEERING) **REGULAR EXAMINATION NOV-DEC-2015**

3EE102:-COMPUTER METHODS IN POWER SYSTEM ANALYSIS

Time: 3 Hours

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

SECTION-I

(A) Derive the following relation : $Z_{loop} = B[z] B^{T}$. Oue-1 (B) Explain briefly fast decoupled load flow method for solving the nonlinear load flow [05] equations.

OR

(A) Fig.1 shows a five bus power system. Each line has an impedance of 0.05 + j0.15 pu. The [10] Oue-1 line shunt admittances may be neglected. The bus power and voltage specification are given helow.

Bus	Generator		load		Voltage	Bus Type
number	PG	Qu	PL	QL		na chi t-m
1	Not specified	Not specified	1.0	0.5	1.02∠0°	Slack
2	2	Not specified	0	0	1.02	PV
3	0	0	0.5	0.2	Not specified	PQ
4	0	0	0.5	0.2	Not specified	PQ
5	0	0	0.5	0.2	Not specified	PQ

Find Y_{bus} (b) Find Q_2 , δ_2 , V_3 , V_4 and V_5 after the first iteration using Gauss seidal method. Assume $Q_{2\min} = 0.2$ pu and $Q_{2\max} = 0.6$ pu.

(A) Explain various types of modification and develop Z bus building algorithm used for short [05] Oue-2 circuit analysis.

(B) Discuss the sequence networks for transformer and Draw the zero sequence network for (1) [05] star-delta transformer with neutral earthed (2) Delta-Delta transformer (3) Delta-Star transformer.

Page 1 of 2

[05]

Que-2	(A) Derive the fault current in Line-to-Line fault on an unloaded generator in terms of Symmetrical components.				
	(B)Discuss the short circuit current of synchronous machine and draw the envelop of short circuit current also discuss transient, sub transient and steady state reactance.				
Que-3	(A) What do you mean by load forecasting? Explain any one load forecasting method.	[05]			

(B) Compare the load flow analysis methods in terms of convergence, solution accuracy, time, [05] Memory requirement, complexity, types of system and Programming.

SECTION-II

- Oue-4 (A) Derive the formation of Y bus matrix of given 'n' bus power system using direct inspection [05] method. [05]
 - (B) Draw and explain flow chart of AC power flow analysis with contingency Selection.

OR

[04] Que-4 (A) Explain the following with respect to power system security (i) Generation shift factor (ii) Line outage distribution factor. (B) For the radial network shown in figure, a 3-phase fault occurs at F. Determine the fault

[06] current and the line voltage at 11 kV bus under fault conditions.

G2

TL2

[05]

[05]

G1 G_1 : 10 MVA, 11 kV, X = 15% G_2 : 10 MVA, 11 kV, X = 12.5% $T1_1$: 10 MVA, 11/33 kV, X = 10% T1 1 TL1₁: 30 km, $Z = (0.27 + j 0.36) \Omega/km$ $T2_2$: 5 MVA, 33/6.6 kV, X = 8%, TL1 TL2₂: 3 km, $Z = (0.135 + j 0.08) \Omega/km$

Que-5 (A) Write short note on Maximum Likelihood Weighted Least Squares Estimation. [05] (B) Explain network observability and pseudo measurement in context with the State estimation [05] in power system.

OR

- Que-5 (A) Explain various sub-blocks used in state estimation using overall block diagram. [05] (B) What is the need of real time and computer control of power system? Also, explain the [05] importance and advantages of SCADA and energy management centers in power system.
- Que-6 (A) Write the short note on bounding. (B) Explain the transient analysis of transmission line.

END OF PAPER Best of LuckΩ