GANPAT UNIVERSITY

M. TECH. SEMESTER: I (ELECTRICAL) REGULAR EXAMINATION NOV - DEC 2015 3EE 101: NUMERICAL TECHNIOUES

Time: 3 Hours

0

Total Marks: 60

Instruction: 1. This question paper has two sections. Attempt each section in separate answer book. 2. Figures to the right indicates full marks.

3. Be precise and to the point in answering the descriptive questions.

Section - 1

- (A) Find a root of the equation $xe^{x} 3 = 0$ correct to three decimal places Oue. -105 using the method of False position (Regula falsi method).
 - (B) Using the Secant method, find the roots correct to four decimal places. 05 x = 2sinx $x_0 = 1.5$

OR

Find a root of the following equation correct to three decimal places. Que. - 1 (A) 05 using the bisection method.

$$x - cosx = 0$$

(B) Find by Newton-Raphson method the root of the following equation 05 correct to four decimal places:

$$4x^4 - 9x^3 + 1 = 0$$

Estimate the production for 2004 and 2006 from the following data: Que. -2(A)

Year:	2001	2002	2003	2004	2005	2006	2007
Production:	200	200	260		350	· ·····	430

The following table gives the results of the measurements of train **(B)** 05 resistance, V is the velocity in miles per hour, R is the resistance in pounds per ton:

V:	20	40	60	80	100	120
R:	5.5	9.1	14.9	22.8	33.3	46.0

If R is related to V by the relation $R = a + bv + cV^2$, find a, b and c.

OR

Construct Newton's forward interpolation polynomial for the following Que. -2(A) 05 data:

x:	4	6	8	10
y:	1		8	16

(B) Predict the mean radiation dose at an altitude of 3000 feet by fitting an 05 exponential curve $y = ab^x$ to the given data:

Altitude (x):	50	450	780	1200	4400	4800	5300
Dose of .	28	30	32	36	51	58 .	69
radiation (y):							

05

Que. – 3	(A)	Derive Lagr	ange's int	erpolation	n formula	•		• •	04	
	(B)	Define Inher number X = off to three	rent errors 0.004997 decimal d	and Trun is (i) trun igits.	cation ern acated to	rors. Find th three decim	ne relative nal digits (i	error if the ii) rounded	04	
	(C)	What do you	u mean by	v converge	ence? Giv	ve its signifi	icance.		. 02	
				S	section -	II				
Que. – 4	(A)	Find the first and second derivatives of $f(x)$ at $x = 1.5$ if								
		x:	1.5	2.0	2.5	3.0	3.5	4.0		
		f(x):	3.375	7.000	13.625	24.000	38.875	59.000		
	(B)	Use Simpso	on's 1/3 rd	rule to fin	$d \int_{0}^{0.6} e^{-x}$	$x^2 dx$ by tak	ing seven	ordinates.	05	
0		Find the va	lue of cos	(1.74) fro	OR on the follow	Ilowing tabl	le:		05	
Que. – 4	(A)	T IIId the Va	1 7		7.4	1 78	1.82	1.86		
		X:	0.991	5 0.98	357 ().9781	0.9691	0.9584		
			0.551			torn à bar-			05	
	(B)	Evaluate \int_{0}^{∞}	$\int \frac{1}{1+x} \frac{dx}{1+x}$ app	plying (i)	Trapezoi	idal rule and	d (ii) Sim	pson's 1/3 rd		
	1.	rule. Find by Taylor's series method, the values of v at $x = 0.1$ and $x = 0.2$ to								
2ue. − 5	(A)	Find by Taylor's series method, the values of y at $x = 0.1$ and $x = 0.2$ five places of decimals from $\frac{dy}{dt} = x^2y - 1$, $y(0) = 1$.								
	(R)	Using the finite difference method, find $y(0.25)$, $y(0.5)$ and $y(0.75)$								
	(1)	satisfying the differential equation $\frac{d^2y}{dx^2} + y = x$, subject to the bour								
	and a second	conditions $y(0) = 0$, $y(1) = 2$.								
		and the second se			OR	Holochor				
Que. – 5	(A)	Using Euler's method, find an approximate value of y corresponding to $x=1$, given that $dy/dx = x + y$ and $y = 1$ when $x = 0$.							05	
	(B)	Using Runge-Kutta method of order 4, compute y (0.2) and y (0.4) fr								
		$10 \frac{dy}{dx} = x^2 + y^2$, y (0) = 1, taking h = 0.1.								
Que. – 6	Atte	empt any tw	/ 0:				in day tari	ين مريخ موقع قد مكتمين	1	
	(A)	Solve the	following	equations	by Gaus	s eliminatio	on method.	•		
÷.	1 4		10	(x + y + y)	2z = 13	3				
			30	x + 10y	+z = 14	4		an an an ann an an an an an an an an an		
		2x + 3y + 10z = 15								
	(B)) Solve the following system of equations by Gauss-Seidel method:							: 	
			6x	+3y + 3y	12z = 20 12z = 3	5				
			4 <i>x</i>	+11y -	z = 33					
	(C)	Solve the	equation x^3	$3 - 12x^2$	+ 39x -	-28 = 0				
		Given tha	t roots be	ing in arit	hmețic pr	ogression.				
				END C	F PAPE	R				
					Page 2 of	f 2	a di na seri di seri d Seri di seri di Seri di seri di	•		
