Student Exam No:-

M. rec. 2 106124 **GANPAT UNIVERSITY** M.TECH SEM-II ELECTRICAL ENGINEERING **REGULAR EXAMINATION** 3EE202:-Power System Dynamics And Control 2014

Time: 3 Hours

Total Marks:-70

[12]

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

SECTION-I

- (a) With necessary assumptions derive expression for open circuit voltage phasor for [06] Que-1 synchronous generator.
 - The active power delivered by salient pole generator to the infinite bus through short (b) [06] transmission line is 0.6 pu. The infinite bus voltage is $V\infty=1 \ge 0^{\circ}$, and value of generator voltage Eg =1.4 .synchronous generators reactances Xd =1.6 and Xq=1.0 and the line reactance XI =0.4. Find the value of Ea and Ia by neglecting armature resistance.

OR

- Derive an expression of stator self-inductances of ideal salient-pole synchronous Que-1 (a) [06] machine in terms of rotor position with usual notations.
 - An alternator is synchronized with an infinite bus. At synchronization field current (b) [06] is unchanged to $i_F = 1*10^3 A$ (actual). The infinite bus voltage (V ∞) being reference is $1/0^{\circ}$ and synchronous reactance is 1.5 pu . With i_F unchanged the steam valves at the turbine are adjusted until PG = 0.3. Then (a) Find Armature current Ia. (b) With PG unchanged, iF is unchanged to 1600 A (actual). Find current Ia.
- Que-2 Sketch model of speed governing system for hydro-turbines and discuss permanent (a) [06] droop and transient droop.
 - Draw schematic diagram of 2.2 model generator and Write inductance matrix for it (b) [05] with all sub matrix components.

OR

- Enlist the types of excitation system and Explain of DC-1 type excitation system. Que-2 (a) [07] A synchronous generator has a round-rotor configuration with Va = 1.0 pu and (b) [04] synchronous reactance Xs of 1.6, r = 0.004 and Ia =1 \angle -60°. Find induced EMF Ea and also draw a phasor diagram. Que-3
 - Attempt any two.
 - Derive mechanical equation for alternator from basic theory of energy consumption (a) principle
 - Draw equivalent circuit model of synchronous machine and write Park's circuit (b) voltage equation for synchronous machine
 - Draw and Explain various types of steam turbine system models. (c)

Page: 1 of 2

SECTION:II

Que-4	(a)	Write a short note on SVC modeling for stability analysis.	[06]
	(b)	Explain the constant impedance, constant current and constant power loads with respect to static load modeling.	[05]
		OR	1
Que- 4	(a)	What is park's transformation ? Explain the importance of parks transformation in synchronous machine dynamic studies,	[05]
	(b)	Explain the induction motor modeling in SI unit.	[06]
Que- 5	(a) (b)	Explain various modes of oscillations with respect to power system stability. The equivalent circuit of single machine connected to infinite bus is shown in figure.	[03] [09]
		$(I_d + jI_q)e^{j\left(\delta - \frac{\pi}{2}\right)}$ $(I_d + jI_q)e^{j\left(\delta - \frac{\pi}{2}\right)}$ K_T K_T K_T $F + jQ$ $V_{\omega}e^{j0}$ Single machine connected to an infinite bus	C
		single interime connected to an infinite offs	
		Draw the phasor diagram of steady state SMIB system, and derive the output torque equation for synchronous machine OR	
Que- 5	(a)	Derive the equation of apparent power supplied by synchronous generator to infinite bus in SMIB system.	[08]
	(b)	Draw the phasor diagram of steady state synchronous generator connected to infinite bus.	[04]
Que-6		Attempt any two.	[12]
	(a) (b) (c)	Derive the power balance equation for multi-machine system. Derive equation for direct axis and quadrature axis voltages (Vd,Vq) of an alternator considering balanced terminal Voltages with Va (t) = $\sqrt{2}$ V cos (Wo t + \angle V). The rotation of generator is described by θ = W1 t + (JI/2) + δ (a) for non-synchronous operation Wo \neq W1(b) When Wo=W1. Explain transmission line modeling for stability analysis.	[12]
	C	END OF PAPER Best of Luck Page: 2of 2	