Exam No:

GANPAT UNIVERSITY M. Tech Sem-II (Electrical Engineering) Regular Examination – April-June-2016 3EE203: Modern Power System Protection

MAX. TIME: 3 HRS.

MAX. MARKS: 60

- Instructions: (1) This Question paper has two sections. Attempt each section in separate answer book. (2) Figures on right indicate marks.
 - (3) Be precise and to the point in answering the descriptive questions.

SECTION - I

Q.-1 (A) Explain essential qualities of a protection scheme in brief. [05]
(B) What do you mean by fault? What are the causes and consequences of fault [05] on power system?

OR

- Q.-1 (A) Define (i) Reach (ii) CT burden (iii) Seal in relay (iv) Flag (v) PSM. [05]
 (B) What is primary and backup protection? Explain different types of back up protection. [05]
- Q.-2 (A) Enlist different faults in generator. Discuss stator inter turn protection of a [05] generator.
 - (B) Compare simple differential protection with biased differential protection. [05]

OR

Q2	(A)	Explain the method of protecting bus bars using differential relaying. What	[05]
		are the limitations of this method and how can they be overcome?	[03]
	(B)	Explain magnetising inpush protection of the state of the state	

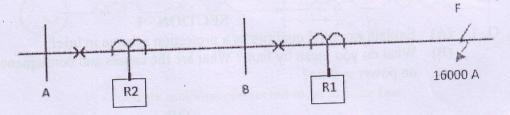
(B) Explain magnetising inrush protection of transformer. Also discuss main [05] harmonics consist in magnetising inrush current of transformer.

Q3	(A)	Describe abnormalities of induction motors in brief.	
	(B)	Explain class A B and C protection and	[05]
	()	Explain class A, B and C protection scheme used for generator.	[05]

SECTION - II

Q.-4 (A) Explain Mann-Morrison technique of numerical relay. [05]
(B) Deduce a generalized mathematical model of distance relay for digital [05] protection.

OR


- Q.-4 (A) What do you mean by numerical relay? Discuss role of each component of [05] the block diagram of numerical relay.
 - (B) Develop a flow chart for the discrete Fourier transform technique. [05]

- (A) Enlist different impedance relays and explain operating principle and [05] 0.-5 characteristic of impedance relay.
 - (B) Explain the need of auto reclosing in modern power system.

[05]

OR

An earth fault develops at point F on the feeder as shown in fig. and the fault [05] current is 16000 A. The IDMT relays R1 and R2 are fed via 800/5 A CTs. (A) Q.-5 The plug setting of relay R1 is 125 % and time multiplier setting (TMS) of 0.2 The circuit breakers take 0.20 second to clear the fault, and the relay error in each case is 0.15 s. For a plug setting of 200 % on relay R2, determine the minimum TMS on that relay for it not to operate before the circuit breaker at B has cleared the fault. The operating time characteristics of the relays is given in table.

	2	4	5	10	16
PSM	2	5	1	28	2.5
Operating time(S)	10	5	4	2.0	
(At TMS=1)				· · · · · · · · · · · · · · · · · · ·	na modi

- Discuss the selection of distance relays for the protection of long, medium [05] **(B)** and short lines.
- [05] Discuss the advantage & disadvantage of numerical relay. Q.-6 (A)
 - Explain adaptive relaying with reference to advance power system [05] **(B)** protection.

END OF PAPER