Student Exam No:-

Date: 25/05/2016. **GANPAT UNIVERSITY** M.TECH SEM-II ELECTRICAL ENGINEERING **REGULAR EXAMINATION APRIL-JUNE-2016 3EE202:-POWER SYSTEM DYNAMICS & CONTROL**

Time: 3 Hours

Due-1

Que-2

Total Marks:-60

Instructions: - 1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 3. Attempt each section in separate answer book.

SECTION-I

- Derive T'do dE'a/dt= [E'a + (Xd-X'd) id + Efd] for synchronous machine of model Que-1 (A) [05] 1.1. **(B)**
 - Derive an expression of stator self-inductances of ideal salient-pole synchronous machine in terms of rotor position with usual notations. [05]

OR

- Obtain a value of internal voltage Ea for a round-rotor generator having terminal voltage (A) Va = 1.0 pu supplying a load of armature current $1 \ge -60^{\circ}$. Machine has a synchronous [05] reactance Xs = 1.6 and resistance r = 0.004. Also draw a phasor diagram.
- Develop dynamic model of synchronous machine with field circuit and two equivalent **(B)** damper windings on q-axis (Model 2.2). Develop stator equations and draw its equivalent [05] circuit and phasor diagram.
- Que-2 Sketch model of speed governing system for hydro-turbines and discuss permanent droop (A) [05] and transient droop. **(B)**
 - Explain field controlled alternator rectifier excitation system with diagram.

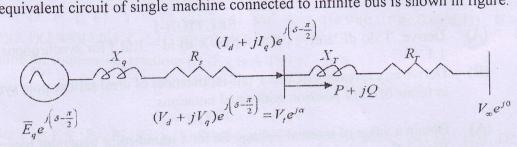
OR

- Develop the block diagram of excitation system and discuss the basic functions of each (A) [05] components. **(B)**
 - An alternator is synchronized with an infinite bus. At synchronization field current is unchanged to $i_F = 1*10^{3}$ A (actual). The infinite bus voltage being reference is $1 \ge 0^{\circ}$ and [05] synchronous reactance is 1.5 pu. With iF unchanged the steam valves at the turbine are adjusted until PG=0.2. Then (a) Find Ia. (b) With PG unchanged, iF is unchanged to 1600 A (actual). Find current Ia.

Oue-3 Attempt any two.

- (A) Draw and Explain various types of steam turbine system models. **(B)**
- State basic assumptions made in steady state analysis of an alternator and Explain the open circuit voltage of a synchronous generator and derive related expressions using usual notations. **(C)**
- Show that if the armature flux linkage components, with respect to synchronously rotating reference frame (ψD and ψQ) are constant, then the transfer EMF terms (d ψd /dt and $d\psi q/dt$) and terms introduced by the variations in the rotor speed cancel each other.

Page: 1of 2


[10]

[05]

SECTION-II

Que-4	(A)	Derive Heffron-Phillips state space model of single machine infinite bus system.	[06]
Yue .	(B)	Write a short note on classification of different modes of oscillations. OR	[04]
Que- 4	(A)	A synchronous generator is connected to an infinite bus through an external reactance $x_e = 0.41$ pu. Compute the Heffron-Phillips constants at the below operating point. $P_g = 0.5$, $V_t = 1.0$, $E_b = 1.0$, Machine data: $x_d = 1.61$, $x_q = 1.54$, $x'_d = 0.31$, $T'_{do} = 5.9$,	[05]
	(B)	$H = 4.9$, $D = 0$, $f_B = 60$ Hz. Explain the induction motor modeling in SI unit.	[05]
Que- 5	(A)	Define the Park's transformation. And write the Park's transformation matrix.	[04] [06]

The equivalent circuit of single machine connected to infinite bus is shown in figure. **(B)**

single machine connected to an infinite bus

Draw the phasor diagram of steady state SMIB system, and derive the output torque equation for synchronous machine

OR

[05]

[05]

- A generator is connected to an infinite bus through an external impedance of jx_e . If $E_b =$ [05] Que-5 (A) $V_{to} = 1.0 \text{ p. u., } P_t = 1.0 \text{ p. u.}$ Find the initial conditions. Assume $x_c = 0.2 \text{ p.u.}$ The generator data: $x_d = 1.8$, $x_q = 1.7$, $x'_d = 0.17$, $x'_q = 0.23$, Ra = 0.0, $T'_d = 0.4$ sec, $T'_q = 0.1$ sec, H = 4 sec, $f_{\rm B} = 60 \, {\rm Hz}$. Discuss how flux decay phenomenon is represented in single machine system. [05] **(B)**
- Explain Static Var Compensator Modeling. State their applications. (A) Que-6
 - Explain transmission line modeling for stability analysis. **(B)**

END OF PAPER