D: 03 01 Exam No:

GANPAT UNIVERSITY

M. Tech. Semester - I Information Technology Regular Examination, Jan - 2014 3IT103: Computer Algorithms

Max Marks: 70

151

[6]

Max Time:-3 Hours]

Instructions:

n. Tech manin

- 1. Figures to the right indicate full marks.
- 2. Each section should be written in a separate answer book.
- 3. Be precise and to the point in your answer.

Section - I

Q-1 (A) Find the optimal assignment for following data using Branch and Bound [6] technique. Here A,B,C,D are persons and 1,2,3,4 are various tasks. Table values indicate the cost of assigning particular task to some person.

	1	2	3	4
A	15	10	9	6
B	8	13	4	12
C	13	20	7	11
D	6	19	16	4

Write any algorithm which has $O(n^2)$ time complexity and verify it using [6] **(B)** tabular method. **OR** 161

	(1)	Design a nower calculation algorithm which has time complexity O(15 ii).	1-1
Q-1	(A)	Design a power calculation algorithm which has time complexity O(1g h).	[6]

Prove Followings **(B)**

(B)

- 1. $\log(\sqrt{n}) = O(\log n)$.
 - 2. $4^{n+1} = O(4^n)$ but $4^{2n} \neq O(4^n)$
- Find big-oh notation for following recurrences. 0 - 2

(A)	$T_n = 1$ = 3T_n 1 + n + 2 ²ⁿ	, if n=0	[-]
	$= 3T_{n1} + n + 2^{2n}$, n>0	

[6] $T(n) = 3T(n/4) + \Theta(n^2)$ use recurrence tree method. (B)

OR

Q-2 Find big-oh notation for following recurrences. [5] T(n) = 2T(n-1) + 2(A) [6] 2. $T(n) = T(2n/3) + n^2$ 1. $T(n) = 2T(n/4) + n^{0.51}$ B) [6] State true or false for followings. (A) 4. $3^{n+9} = O(4^n)$ 1. $n^2 = O(n^2)$

5. $\emptyset(1) = O(1)$ **2.** $\lg n = \Omega(n)$ 6. $n^2 + 10 = \Omega(1)$ 3. $n^3 = \emptyset(n^4)$ Write binary search algorithm and analyze it for best case and worst case

using tabular method.

Section - II

Q-4	(A)	Show the working of graph searching technique on suitable graph which uses queue data structure. Give its time complexity.	[6]
	(B)	What is backtracking? Solve 4-queen problem using backtracking.	[6]
		OR	
Q-4	(A)	Given a set $S = \langle 2, 5, 6, 7, 8 \rangle$ and (target sum) Z=13. Obtain the subset sum using backtracking approach. Also draw the tree that shows the backtracking.	[4]
	(B)	Find the LCS of (A B D C F E G) and (B D A C B E G) using dynamic programming. Show complete table use to find LCS and also write equations used to fill up the table.	[8]
Q-5	(A)	Prove that VERTEX-COVER ≤ _P INDEPENDENT-SET.	[5]
	(B)	Consider following instance of the fractional knapsack problem, with v depicting the value and w depicting the weight of each item whereas W depicting the total weight carrying capacity of the knapsack. i = [1 2 3 4] v = [50 30 25 60] w = [40 15 30 20] W = 90 Solve this problem using greedy strategy . Also write algorithm.	[6]
		OR	
2-5	(A)	What is decision and optimization version of problem? Give both the version for problem of Hamiltonian cycle and clique of graph.	[5]
	(B)	Consider following instance of the binary knapsack problem, with v depicting the value and w depicting the weight of each item whereas W depicting the total weight carrying capacity of the knapsack. $i = [1 \ 2 \ 3 \ 4]$ v = [30 10 55 60] w = [10 13 5 8] W = 20 Solve this problem using dynamic programming.	[6]
2-6	(A)	Write worst case recurrence relation of merge sort. Show the working of merge sort algorithm on following data. 10, 25, 36, 9, 2, 15, 99, 87, 65, 14	[4]
	(B)	What is chain matrix multiplication problem? Find the optimal way of multiplying following matrices using dynamic programming.	[8]

A: 5 x 50, B: 50 x 10, C: 10 x 60, D: 60 x 3

END OF PAPER

Page 2 of 2