GANPAT UNIVERSITY

M. Tech Sem-I, Information Technology Regular Examination Dec-Jan 2014 3IT102: Computational Intelligence

Max Time: 3 Hours] [MaxMarks: 60

Instructions: 1. Figures to the right indicate full marks of the question.

- 2. All questions are compulsory.
- 3. Each section should be written in a separate answer book.

SECTION: I

Q:1	(a)	Classify the following problems using AI problem characteristics.	[8]
(()	(i) Missionary and Cannibals (ii) N Queen (iii) 8 Puzzle	
		(iv) Monkey- Banana	
	(b)	Define Backtracking.	[2]
	(-)	OR	
Q:1	(a)	Explain Best first search procedure with an example	[6]
	(b)	Briefly discuss Hill climbing and also show its weaknesses.	[4]
	(-)		
Q:2	(a)	You are given 3 Jugs A, B and C of capacity 10 liters, 7 liters and 3	[8]
	100	liters. Jug A is completely filled with water while rest jugs are	
ej	. 1	empty. Initial State is (10, 0, 0). You are required to obtain 5 liters	
	* 1	of water in Jug A and B. exchange of water between the jugs is only	
		permitted. Obtain the Goal State and also draw the state space.	
		Suggest the appropriate strategy also.	
	(b)	Discuss the characteristics of control strategy.	[2]
		OR	
Q:2	(a)	You are given 2 jugs of capacity 7 lites and 5 liters. Obtain 1 liter of	[6]
		water in 7 liters of jug. There are no measuring markers on both the	
		jugs. Obtain the Goal State and also draw the state space. Suggest the	
		appropriate strategy also.	F 43
	(b)	Define 'Heuristic' and also write few heuristics for the 8-Puzzle and	[4]
		N Queen Problem.	
			[7]
Q:3	(a)	Solve the following crypt arithmetic puzzle. Every Letter must be	[6]
		assigned unique digit.	
		S E V E N	
		S E V E N + S E V E N	
		+ S E V E N X	
		$\frac{+}{T}$ $\frac{S}{W}$ $\frac{1}{E}$ $\frac{A}{Y}$	
	(h)	Discuss Overestimation and Underestimation in A* algorithm	[4]
	(b)	Discuss Overestillation and Onderestillation in 71 argorithm	f .1

SECTION: II

Q:4 (a) Discuss α - β pruning with an example [7] Compare Perceptron vs ADALINE (b) Q:4 Explain Pocket algorithm in brief. (a) Prove that Given training samples of two linearly separable (b) classes, Perceptron terminates after finite number of steps. Q:5 Apply the ADALINE using given parameters on following data sets. Continue up to 2 epochs. Learning rate, Initial weights and bias are initialized as 1. Class 1: (3, 1), (4, 2) Class 2: (2, 2), (1, 3) (b) Define Unsupervised learning. [2] OR Explain the issues related with parameters of Backpropagation Q:5 (a) [8] algorithm in detail. (b) Define computational Intelligence and soft computing [2] Q:6 What are the results obtained using the network of given below [6] in figure 1 if the initial output vectors are (0.5, 0.9, 1, 1, 0.9)? What would be a more desirable value? Suggest a modification of maxnet that gives the desirable answer. Self excitation weight $\theta=1$ and mutual inhibition magnitude $\epsilon<1/(No$ of nodes). Describe various applications of Neural networks (b) [4]

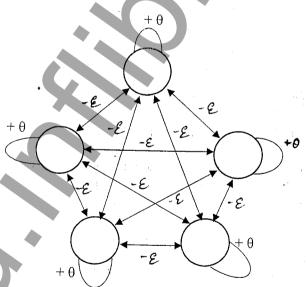


Figure 1 Maxnet: competitive network