Student Exam No:

GANPAT UNIVERSITY

M. TECH SEM. I (INFORMATION TECHNOLOGY)

CBCS REGULAR EXAMINATION NOV – DEC 2017

3IT101: SOFT COMPUTING

Total Tim	Total Time: 3 hours Total Marks:				
Instructio	ns: 1. Write each section in separate answer sheet.2. Figure to the right indicates full marks.3. Assume suitable data wherever necessary.				
	SECTION – I	d heuristic functions for anoi th A* algorithm. (4) detic puzzle. (6) detic puzzle. (6) detic puzzle. (6) detic puzzle (4) detic puzzle (5)			
Q – 1 (a)	Explain the characteristics of following problems: (i) 8-puzzle (ii) N-queens (iii) Chess	(6)			
(b)	Discuss the travelling salesman problem in the context of state space search problem.	(4)			
	OR				
Q-1 (a)					
	(i) N-queens (ii) Blocks-world (iii) Tower of Hanoi				
(b)	Discuss the problem of over-estimation and under-estimation with A* algorithm.	(4)			
Q-2 (a)	What is constraint satisfaction? Solve the following crypt-arithmetic puzzle.	(6)			
	BEST +MADE				
	M A S E R				
(b)	Discuss recoverable class of problems with the help of an example.	(4)			
	OR				
Q-2 (a)	Define the problem of water jug as a state space search problem. Design rules for the same.				
(b)	When steepest-ascent hill climbing may fail? Also write the solutions to overcome it.	(6)			
Q-3 (a)	What is soft computing? Explain how it differs from traditional artificial intelligence with help of an example.	(4)			
(b)	Differentiate between DFS and BFS. Discuss the scenario in which DFS works better than BFS.	(4)			
(c)	Discuss the characteristics of a good control strategy.	(2)			

SECTION - II

Q-4 (a) Discuss $\alpha-\beta$ pruning with appropriate example.

- (5)
- **(b)** How fuzzy logic differs from crisp logic? State about any two problems where fuzzy logic works better than crisp logic.

(5)

OR

- Q-4 (a) What is back-propagation in neural network? Why Log-sigmoid is taken as activation (5) function for such networks?
 - (b) Explain various membership functions used for fuzzy logic.

(5)

Q-5 Develop Perceptron model and obtain the final weights and bias after 2 epochs for the given parameters. Given Initial weights $W_1 = W_2 = W_3 = 0$ and b=0. Leaning coefficient $\eta=1$ and node function is as follows:

$$y = f(y_{in}) = \begin{cases} -1, & y_{in} < 0 \\ 0, & y_{in} = 0 \\ 1, & y_{in} > 0 \end{cases}$$

X_1	X_2	X ₃	T
1	1	1	1
-1	1	1	-1
1	-1	1	-1
-1	-1	1	-1
1	1	-1	-1
-1	1	-1	-1
1	-1	-1	-1
-1	-1	-1	-1

OR

- Q-5 (a) Differentiate Adaline and Madaline networks. Write and explain the MRI learning rule for Madaline network.
 - **(4)**

(b) Compare Biological neural network with Artificial neural network.

. .

Q-6 (a) Explain various activation functions used in artificial neural network.

(6)

(b) Prove Fuzzy Demorgan's law: $(A \cap B) = (A^C \cup B^C)^C$

(4)

END OF PAPER