GANPAT UNIVERSITY M. TECH SEM. II INFORMATION TECHNOLOGY REGULAR EXAMINATION MAY/JUNE: 2014 3IT201: Digital Image Processing

Time: 3 Hours]

[Total Marks: 70

[4]

Instructions: 1. Figures to the right indicate full marks of the question.

- 2. All questions are compulsory.
- 3. Each section should be written in a separate answer book.

SECTION: I

Q:1. (à)

An image with intensity in the range [0 1] has the input PDF $p_r(r)$ [7] and specified PDF $p_z(z)$ shown in below fig. Find the transformation that will accomplish this.

(b)

(b)

Develop an algorithm for converting a one pixel thick 8-path to a [5] 4-path

OR

Q:1 (a)

Suppose that a flat area with centre at (x0, y0) is illuminated by a [4] light source with intensity distribution

 $i(x, y) = K.e^{[(x-x_0)^2 + (y-y_0)^2]}$

Assume for simplicity that the reflectance of the area is constant and equal to 1.0 and let k=255. If the resulting image is digitized with k bits of intensity resolution and the eye can detect an abrupt change of eight shades of intensity between adjacent pixels, what value of k will cause visible false contouring?

Distinguish Dark, Bright, low contrast and High contrast image [4] based on their histograms.

Describe laplacian filters.

Show that a second pass of histogram equalization will produce [4] exactly the same result.

Page 1 of 2

- (b) Derive Fourier transform of Impulse and Shifted impulse
- (c) Describe Convolution briefly

OR

[5]

[2]

[3]

[6]

[6]

Q:2 (a

(a) Show that Laplacian is isotropic. You will need the following [6] equations relating coordinates for axis rotation by an angle θ

$x = x' cos\theta - y' sin\theta$

 $y = x' sin\theta + y' cos\theta$

Where (x, y) are unrotated coordinates and (x', y') are rotated coordinates

- (b) Define Histogram and Normalized Histogram
- (c) Describe Non-liner filters in brief.
- Q:3 (a) Define Impulse, Ringing effect. and discuss various High pass filters.
 - (b) Elaborate the following keywords

(i) Contrast stretching (ii) Bi-Cubic Interpolation (iii) Brightness Adaptation and Simultaneous Contrast

SECTION: II

Q:4	(a)	Prove the following	[6]
		(i) A o B is a subset of A	
		(ii) $(A \circ B) \circ B = A \circ B$	F 4 7
	(b)	Briefly describe Thinning and Thickening	[4]
	(c)	What is the effect of repeatedly eroding the image and what is the	[2]
		effect of repeatedly dilating the image?	
		OR	101
Q:4	(a)	Elaborate various Noise models	[8]
	(b)	Discuss the purpose of Image segmentation with an example	[2]
	(c)	Distinguish Image restoration and Image Enhancement	[2]
Q:5	(a)	Explain Moore boundary tracking algorithm with an example	[3]
	(b)	Derive Difference of Gaussians and show how does it approximate	[5]
		Laplacian of Gaussian?	
	(c)	Define segmentation, its types and its purpose.	[3]
		OR	
Q:5	(a)	Briefly explain Morphological watershed.	[5]
	(b)	Show Erosion operation with an example	[2]
	(c)	Explain Intensity thresholding.	[4]
	· · ·		
Q:6	(a) 🗸	Describe the solution of image segmentation with multiple	[6]
		thresholds through the of Otsu's method	
	(b)	Explain the edge linking using Hough transformation.	[6]
4		interest Dark Street, low matters and High contrast immer	đ
-		End of Dillion Intruction need to be	
		End of PaperEnd of Paper	
		now the a second pass of his grant equalization will preduce	

Page 2 of 2

5

:S II

CI