GANPAT UNIVERSITY M. Tech Sem. II Information Technology Regular Examination April - June 2016 3IT201: Digital Image Processing

Max Time: 3 Hours]

[Max Marks: 60

Instructions: 1. Figures to the right indicate full marks of the question.

2. All questions are compulsory.

Explain "Contrast stretching" in brief.

3. Each section should be written in a separate answer book.

SECTION: I

- Q:1 (a)
 - Perform the following of the given image using the given mask. Also discuss on the obtained result. Assume the same neighboring pixels [7] beyond the border. F10 15 00 003

	110	15	20	22			_		
A =	18	16	30	24	M =	1 1		1	1]
	40	50	54	36		$= \frac{1}{9}$	1	1	
	44	48	56	48			L1	1	1]

Q:1 (a)

(b)

OR Perform the following of the given image using the given mask. Also discuss on the obtained result. Assume the same neighboring pixels [7] beyond the border.

	110	12	10	10	1				
4 -	70	72	70	74		[-1	-1	-1]	
n –	14	12	12	14	M =	0	0	0	
	120	20	22	22		L 1	1	1]	

Explain Bit plane slicing in brief. (b)

> Consider the following binary image segment. Show all possible 4path, 8-path and m-path between the shaded pixels. Also Show the [8] shortest path. Compute the Euclidean and city block distance between the shaded pixels. Assume the coordinates of top-left pixel (1, 1) and bottom-right pixels as (5, 5).

			(-)			
	07	0	1	1	μ	
1000	0	0	0	1	1	
	0	0	1	0	1	
	0	1	0	1	1	
1	-1		1	1	1	

	(-)	Define the magnitude and power spectrum of Fourier transform	[2]
0.2	(a)	OR OR	[2]
Q.2	(a)	Explain the process of filtering in fragmenter in the second seco	2
		i meding in nequency domain step wise.	[6]

Page 1 of 3

Q:2

(a)

(h)

Define the

[3]

[3]

(b) Prove the following equality.

 $\Im\{f(t) \star h(t)\} = F(u)H(u)$

Q:3

(a) Perform Histogram equalization on following 5x5, 3 bit image [7] segment. Also obtain the histogram of the equalized image.

1	F2	2	0	1	17	
1	3	3	2	4	1	
	2	1	2	3	4	
	1	2	3	3	1	
1	-2	3	1	1	3]	

(b) Explain the following terms

(i) Interpolation (ii) Intensity Resolution (iii) Convolution

[4]

[3]

Page 2 of 3

anon	DTO		
SH.C			11
NUC I		11.	11
the second se			

~			
Q:4	(a)	Write the morphological equation for Dilation. State the use of it. Discuss duality expression of erosion and dilation	[5]
	(b)	Find the Hit or Miss transformation for the given Fig. (A) using SE given in Fig. (B).	[5]
		OP	
Q:4	(a)	Perform opening and closing mombala in the	
		image segment A given in Fig. (C) using structuring element B given in Fig.(D).	[5]
	(b)	What is skeleton? Explain the procedure to derive the skeleton.	[5]
Q:5	(a)	Explain Otsu's method for the second	
	(b)	Discuss the DoG operator	[5]
		- seeds the Doo operator.	[5]
		OR	
Q:5	(a)	Explain how edge linking algorithm works. State the importance of it.	[5]
	(b)	What do you mean by multiple thresholding? Discuss the basic global thresholding algorithm.	[5]
Q:6	(a)	Explain following terms:	
		1. Chain codes 2. Signatures 3. Polygonal Approximation	[5]
	(b)	When the gradient of an image is used to detect edges the main	
		problem is that differentiation enhances noise. How this and the	[3]
		generally addressed?	
	(c)	What is the role of morphology in image processing?	
	1-1-		[2]
		0000	
	Fig		
	rig.	(A) Fig. (B) Fig. (C) Fig. (D)	
		END OF PAPER	