[6]

GANPAT UNIVERSITY M. TECH SEM- III (CE) REGULAR EXAMINATION NOV-DEC 2015 3CE302: Compiler Design

[Total Marks: 60 Time: 3 Hours] Instructions:

- 1. This Question paper has two sections. Attempt each section in separate answer book.
- 2. Figures on right indicate marks.
- 3. Be precise and to the point in answering the descriptive questions.

- SECTION-I [2] What is Cross Compiler? Also write good qualities of a compiler in detail? 0-1 [2] Write a CFG for the regular expression (0+1)*10*. [6] Consider the following expression in C: [C] Sum = a - b * c / 10What will be the output after each phases of compiler in detail? [2] What is left recursion in grammar? Explain with an example. 0-1 [A] Write a CFG for the language $A=\{a^nb^m \mid n,m \ge 0\}$ [2] [B] Remove the unit production from following CFG's: [6] [C] 1) $S \rightarrow AB$ 2) $S \rightarrow aC \mid SB$ $A \rightarrow bsca$ $A \rightarrow a$ $B \rightarrow C \mid b$ $B \rightarrow aSB \mid bBC$ $C \rightarrow D$ $C \rightarrow aBC \mid ad$ $D \rightarrow a$ Q-2 Explain shift reduce parser with block diagram. Differentiate: Top Down Parser Vs. Bottom Up Parser. Eliminate the null production from following CFG's: [C] 1) $S \rightarrow ABABAB$ 2) $S \rightarrow aAB \mid dA$
 - [2] 121 161
 - $A \rightarrow a \mid \epsilon$ $A \rightarrow bAc \mid \epsilon$ $B \rightarrow dB \mid \epsilon$ $B \rightarrow b \mid \epsilon$ OR
 - [4] What is grammar? Explain different types of grammar in detail. Construct a predictive parsing table for the following grammar and parse the string [6] "qbbcab".

 $S' \rightarrow S\#$ $S \rightarrow qABC$ $A \rightarrow a \mid bbD$ $B \rightarrow a \mid \epsilon$ $C \rightarrow b \mid \epsilon$ $D \rightarrow c \mid \epsilon$

0-2

Find First() and Follow() for the following grammar. Also check whether grammar is [4] 0-3 LL(1) or not. Justify your answer.

 $S \rightarrow PQ$ $Q \rightarrow +PQ \mid \epsilon$ $P \rightarrow RT$ $T \rightarrow *RT$ $R \rightarrow (S) \mid id$

[B] Discuss R-R conflict and S-R conflict of LR(0), SLR, CLR & LALR with example.

SECTION-II

Q-4	[A]	Construct SLK parsing table for the following grammar: $E \rightarrow xTy \mid xFy \mid xTz$	[4]
		$T \rightarrow aE \mid q$ $F \rightarrow b$	
	[B]	Construct LALR parsing table for the following grammar: $S \rightarrow aCd \mid bDd \mid aDc \mid bCc$ $C \rightarrow a$	[6]
		$D \rightarrow b$	
0.4		OR	
Q-4	[A]	Construct operator precedence parsing table for the following grammar: $P \rightarrow SR \mid S$ $R \rightarrow bSR \mid bS$ $S \rightarrow WbS \mid W$	[4]
		$W \rightarrow L^*W \mid L$ $L \rightarrow id$	
	[B]	List the method to perform loop optimization. Explain any three in detail with example.	[6]
Q-5	[A]	Construct CLR parsing table for the following grammar: $S \rightarrow aABe$ $A \rightarrow Abc \mid b$	[4]
	[B]	$B \rightarrow d$ Explain LR parsing algorithm with diagram. Construct LR (0) parsing table for given grammar and check whether string "aaaabab" is accepted or not. $S \rightarrow BB$ $B \rightarrow aB \mid b$	[6]
0.4		OR OR	
Q-5	[A] [B]	What is dead code? Explain dead code elimination in detail with example. List the errors generate by lexical analysis phase, syntax analysis phase and semantic analysis phase with example.	[4] [6]
Q-6	[A]	Consider the following grammar: $A \rightarrow XY \mid Z$	[3]
		$X \rightarrow xXy \mid xy$ $Y \rightarrow zYw \mid zw$ $Z \rightarrow xZw \mid xWw$ $W \rightarrow yWz \mid yz$	
	(D)	For the string "xxyyzzww", check grammar is ambiguous or not?	
	[B] [C]	What is an operator grammar? Give an example. Do as directed:	[2]
		1. Perform the code movement optimization on following code: 2. Perform loop fission on following code: code:	[5]
		for ($k = 0$; $k \le 20$; $k++$) int $i=0$, a[100], b[100]; while ($i < 100$)	
		p=q+5;	; !
		a[i] = 1 + (q + 5) + 70; $a[i] = 1;$ $b[i] = 2;$	
		i = i + 1;	